On the Activity/Selectivity and Phase Stability of Thermally Grown Copper Oxides during the Electrocatalytic Reduction of CO2

被引:45
|
作者
Velasco-Velez, Juan-Jesus [4 ,5 ]
Chuang, Cheng-Hao [1 ]
Gao, Dunfeng [2 ,3 ]
Zhu, Qingjun [4 ,5 ]
Ivanov, Danail [5 ]
Jeon, Hyo Sang [5 ]
Arrigo, Rosa [6 ]
Mom, Rik Valentijn [5 ]
Stotz, Eugen [5 ]
Wu, Heng-Liang [7 ]
Jones, Travis E. [5 ]
Roldan Cuenya, Beatriz [5 ]
Knop-Gericke, Axel [4 ,5 ]
Schloegl, Robert [4 ,5 ]
机构
[1] Tamkang Univ, Dept Phys, New Taipei 25137, Taiwan
[2] Max Planck Gesell, Dept Interface Sci, Fritz Haber Inst, D-14195 Berlin, Germany
[3] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[4] Max Planck Inst Chem Energy Convers, Dept Heterogeneous React, D-45470 Mulheim, Germany
[5] Fritz Haber Inst Max Planck Gesell, Dept Inorgan Chem, D-14195 Berlin, Germany
[6] Univ Salford, Sch Sci Engn & Environm, Manchester M5 4WT, Lancs, England
[7] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan
基金
欧洲研究理事会;
关键词
cathodic CO2 reduction reaction; oxide derived copper; electrocatalysis; morphology/roughness changes; SEM; ECSA; operando X-ray spectroscopy; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTROLYTE DESIGN; OXIDATION-STATE; CU CATALYSTS; ELECTROREDUCTION; HYDROGENATION; SPECTROSCOPY; SELECTIVITY; ETHYLENE;
D O I
10.1021/acscatal.0c03484
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Revealing the active nature of oxide-derived copper is of key importance to understand its remarkable catalytic performance during the cathodic CO2 reduction reaction (CO2RR) to produce valuable hydrocarbons. Using advanced spectroscopy, electron microscopy, and electrochemically active surface area characterization techniques, the electronic structure and the changes in the morphology/roughness of thermally oxidized copper thin films were revealed during CO2RR. For this purpose, we developed an in situ cell for X-ray spectroscopy that could be operated accurately in the presence of gases or liquids to clarify the role of the initial thermal oxide phase and its active phase during the electrocatalytic reduction of CO2. It was found that the Cu(I) species formed during the thermal treatment are readily reduced to Cu-0 during the CO2RR, whereas Cu(II) species are hardly reduced. In addition, Cu(II) oxide electrode dissolution was found to yield a porous/void structure, where the lack of electrical connection between isolated islands prohibits the CO2RR. Therefore, the active/stable phase for CO2RR is metallic copper, independent of its initial phase, with a significant change in its morphology upon its reduction yielding the formation of a rougher surface with a higher number of underco-ordinated sites. Thus, the initial thermal oxidation of copper in air controls the reaction activity/selectivity because of the changes induced in the electrode surface morphology/roughness and the presence of more undercoordinated sites during the CO2RR.
引用
收藏
页码:11510 / 11518
页数:9
相关论文
共 50 条
  • [31] How Temperature Affects the Selectivity of the Electrochemical CO2 Reduction on Copper
    Vos, Rafae''l E.
    Kolmeijer, Kees E.
    Jacobs, Thimo S.
    van der Stam, Ward
    Weckhuysen, Bert M.
    Koper, Marc T. M.
    ACS CATALYSIS, 2023, 13 (12) : 8080 - 8091
  • [32] Controlled Selectivity of CO2 Reduction on Copper by Pulsing the Electrochemical Potential
    Kimura, Kevin W.
    Fritz, Kevin E.
    Kim, Jiyoon
    Suntivich, Jin
    Abruna, Hector D.
    Hanrath, Tobias
    CHEMSUSCHEM, 2018, 11 (11) : 1781 - 1786
  • [33] Intermetallic Copper-Antimony Alloy for Enhanced Electrocatalytic CO2 Reduction to CO
    Huang, Honghao
    Yue, Kaihang
    Lei, Kai
    Xia, Bao Yu
    Yan, Ya
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (29): : 12067 - 12074
  • [34] Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO
    Hansen, Heine A.
    Varley, Joel B.
    Peterson, Andrew A.
    Norskov, Jens K.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (03): : 388 - 392
  • [35] Electrocatalytic CO2 reduction to syngas
    Chang, Bing
    Min, Zhaojun
    Liu, Ning
    Wang, Nan
    Fan, Maohong
    Fan, Jing
    Wang, Jianji
    GREEN ENERGY & ENVIRONMENT, 2024, 9 (07) : 1085 - 1100
  • [36] Electrocatalytic Alloys for CO2 Reduction
    He, Jingfu
    Johnson, Noah J. J.
    Huang, Aoxue
    Berlinguette, Curtis P.
    CHEMSUSCHEM, 2018, 11 (01) : 48 - 57
  • [37] G-quadruplex Nanowires To Direct the Efficiency and Selectivity of Electrocatalytic CO2 Reduction
    He, Lei
    Sun, Xiaofu
    Zhang, Hua
    Shao, Fangwei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (38) : 12453 - 12457
  • [38] Curvature-Dependent Selectivity of CO2 Electrocatalytic Reduction on Cobalt Porphyrin Nanotubes
    Zhu, Guizhi
    Li, Yawei
    Zhu, Haiyan
    Su, Haibin
    Chan, Siew Hwa
    Sun, Qiang
    ACS CATALYSIS, 2016, 6 (09): : 6294 - 6301
  • [39] Three-Phase Photocatalysis for the Enhanced Selectivity and Activity of CO2 Reduction on a Hydrophobic Surface
    Li, Ang
    Cao, Qian
    Zhou, Guangye
    Schmidt, Bernhard V. K. J.
    Zhu, Wenjin
    Yuan, Xintong
    Huo, Hailing
    Gong, Jinlong
    Antonietti, Markus
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (41) : 14549 - 14555
  • [40] Electrocatalytic CO2 Reduction to Formate on Cu Based Surface Alloys with Enhanced Selectivity
    Mosali, Venkata Sai Sriram
    Zhang, Xiaolon
    Zhang, Ying
    Gengenbach, Thomas
    Guo, Si-Xuan
    Puxty, Graeme
    Horne, Michael D.
    Bond, Alan M.
    Zhang, Jie
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (24) : 19453 - 19462