Similarity Measures for Collaborative Filtering Recommender Systems

被引:0
|
作者
Al Hassanieh, Lamis [1 ]
Abou Jaoudeh, Chadi [2 ]
Abdo, Jacques Bou [1 ]
Demerjian, Jacques [3 ]
机构
[1] Notre Dame Univ, Comp Sci Dept, Deir El Qamar, Lebanon
[2] Antonine Univ, Fac Engn, TICKET Lab, Baabda, Lebanon
[3] Lebanese Univ, Fac Sci, LARIFA EDST, Fanar, Lebanon
关键词
Recommender systems; Collaborative filtering; Neighborhood-based models; Similarity measures;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Collaborative filtering recommender systems evaluate users' ratings in order to give them better recommendations. One of the popular ways to make rating predictions is by using neighborhood-based models which rely on calculating the similarities between users, and use the concept that similar users will tend to rate the same items similarly. Different similarity measures were proposed in previous studies. In this paper, we present a clear study of the most used similarities (PCS, CVS, MSD, SRC, FPC, WPC and DSim) by implementing them on the same dataset, and taking into consideration different samples from this dataset. Then we evaluate these similarities using the same metrics, in order to have a better comparison and to choose the similarity measure that shows the best accuracy of prediction.
引用
收藏
页码:165 / 169
页数:5
相关论文
共 50 条
  • [31] Neural embedding collaborative filtering for recommender systems
    Tianlin Huang
    Defu Zhang
    Lvqing Bi
    Neural Computing and Applications, 2020, 32 : 17043 - 17057
  • [32] Tag Based Collaborative Filtering for Recommender Systems
    Liang, Huizhi
    Xu, Yue
    Li, Yuefeng
    Nayak, Richi
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2009, 5589 : 666 - 673
  • [33] Neural embedding collaborative filtering for recommender systems
    Huang, Tianlin
    Zhang, Defu
    Bi, Lvqing
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (22): : 17043 - 17057
  • [34] Evolution of Neural Collaborative Filtering for Recommender Systems
    Metsai, Alexandros, I
    Karamitsios, Konstantinos
    Kotrotsios, Konstantinos
    Chatzimisios, Periklis
    Stalidis, George
    Goulianas, Kostas
    2022-14TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST 2022), 2022, : 86 - 90
  • [35] AN INCREMENTAL COLLABORATIVE FILTERING ALGORITHM FOR RECOMMENDER SYSTEMS
    Komkhao, Maytiyanin
    Li, Zhong
    Halang, Wolfgang A.
    Lu, Jie
    UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2012, 7 : 327 - 332
  • [36] Recommender Systems: Improving Collaborative Filtering Results
    Bobadilla, Jesus
    Serradilla, Francisco
    Gutierrez, Abraham
    2009 7TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING, 2009, : 93 - 99
  • [37] Hierarchical Clustering for Collaborative Filtering Recommender Systems
    Inga Chalco, Cesar
    Bojorque Chasi, Rodolfo
    Hurtado Ortiz, Remigio
    ADVANCES IN ARTIFICIAL INTELLIGENCE, SOFTWARE AND SYSTEMS ENGINEERING, 2019, 787 : 346 - 356
  • [38] A new collaborative filtering algorithm for recommender systems
    Yu, Yao
    Zhu, Shanfeng
    Liu, Jinshuo
    Chen, Xinmeng
    DCABES 2006 PROCEEDINGS, VOLS 1 AND 2, 2006, : 634 - 636
  • [39] Joint Neural Collaborative Filtering for Recommender Systems
    Chen, Wanyu
    Cai, Fei
    Chen, Honghui
    de Rijke, Maarten
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2019, 37 (04)
  • [40] Active Learning in Collaborative Filtering Recommender Systems
    Elahi, Mehdi
    Ricci, Francesco
    Rubens, Neil
    E-COMMERCE AND WEBTECHNOLOGIES, 2014, 188 : 113 - 124