A general steady state distribution based stopping criteria for finite length genetic algorithms

被引:20
|
作者
Pendharkar, Parag C.
Koehler, Gary J.
机构
[1] Penn State Univ, Capital Coll, Sch Business Adm, Middletown, PA 17057 USA
[2] Univ Florida, Warrington Coll Business Adm, Gainesville, FL 32611 USA
关键词
genetic algorithms; heuristic search; worst-case analysis; error bounds; Markov processes;
D O I
10.1016/j.ejor.2005.10.050
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose two general stopping criteria for finite length, simple genetic algorithms based on steady state distributions, and empirically investigate the impact of mutation rate, string length, crossover rate and population size on their convergence. Our first stopping criterion is based on the second largest eigenvalue of the genetic algorithm transition matrix, and the second stopping criterion is based on minorization conditions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1436 / 1451
页数:16
相关论文
共 50 条
  • [31] Optimal energy restoration for general distribution systems by genetic algorithms
    Bretas, NG
    Delbem, ACB
    de Carvalho, A
    POWERCON '98: 1998 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY - PROCEEDINGS, VOLS 1 AND 2, 1998, : 43 - 47
  • [32] Behavior of finite population variable length genetic algorithms under random selection
    Stringer, Hal
    Wu, Annie S.
    GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, 2005, : 1249 - 1255
  • [33] Use of Web Based Calculator of Genetic Algorithms For Optimal Coding the States of Finite State Machines
    Hristov, Valentin
    Kalpachka, Gergana
    2014 10TH FRANCE-JAPAN/ 8TH EUROPE-ASIA CONGRESS ON MECATRONICS (MECATRONICS), 2014, : 274 - 278
  • [34] Constrained multi-objective optimization using steady state genetic algorithms
    Chafekar, D
    Xuan, J
    Rasheed, K
    GENETIC AND EVOLUTIONARY COMPUTATION - GECCO 2003, PT I, PROCEEDINGS, 2003, 2723 : 813 - 824
  • [35] A Tight Lower Bound on the Expected Runtime of Standard Steady State Genetic Algorithms
    Oliveto, Pietro S.
    Sudholt, Dirk
    Witt, Carsten
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 1323 - 1331
  • [36] Replacement strategies to maintain useful diversity in steady-state genetic algorithms
    Lozano, M
    Herrera, F
    Cano, JR
    SOFT COMPUTING: METHODOLOGIES AND APPLICATIONS, 2005, : 85 - 96
  • [37] On the Benefits of Populations for the Exploitation Speed of Standard Steady-State Genetic Algorithms
    Dogan Corus
    Pietro S. Oliveto
    Algorithmica, 2020, 82 : 3676 - 3706
  • [38] Designing communication networks topologies using steady-state genetic algorithms
    Sayoud, H
    Takahashi, K
    Vaillant, B
    IEEE COMMUNICATIONS LETTERS, 2001, 5 (03) : 113 - 115
  • [39] Comparing genetic robustness in generational vs. steady state evolutionary algorithms
    Jones, Josh
    Soule, Terry
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 143 - +
  • [40] On the Benefits of Populations for the Exploitation Speed of Standard Steady-State Genetic Algorithms
    Corus, Dogan
    Oliveto, Pietro S.
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 1452 - 1460