Role of carotenoids in adaptation of the photosynthetic bacterium Rhodobacter sphaeroides to growth conditions

被引:0
|
作者
Yeliseev, AA [1 ]
Kaplan, S [1 ]
机构
[1] UNIV TEXAS,HLTH SCI CTR,SCH MED,DEPT MICROBIOL & MOL GENET,HOUSTON,TX 77225
关键词
carotenoid; antenna complex; Rhodobacter sphaeroides;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The purple non-sulfur bacterium Rhodobacter sphaeroides call grow under aerobic (chemoheterotrophic) and anaerobic (photosynthetic) conditions. Two photosynthetic antenna complexes, LH1 and LH2, are synthesized at various ratios depending on illumination intensity during anaerobic growth. Carotenoids including spheroiden and spheroidenone, bacteriochlorophyll, and structural polypeptides are components of the antenna complexes. Spheroiden predominates in the LH2 complex and spheroidenone is detected only in the LH1 complex. Accumulation of the two major carotenoids depends on the stoichiometry of the photosynthetic complexes. Carotenoids can participate in the regulation of LH1 and LH2 formation and adaptation of R. sphaeroides to changes in illumination intensity during photosynthetic growth.
引用
收藏
页码:898 / 902
页数:5
相关论文
共 50 条
  • [21] Improvement of growth stability of photosynthetic bacterium Rhodobacter capsulatus
    Yegani, R
    Yoshimura, S
    Moriya, K
    Katsuda, T
    Katoh, S
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2005, 100 (06) : 672 - 677
  • [22] Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV
    Asada, Yasuo
    Tokumoto, Masaru
    Aihara, Yasuyuki
    Oku, Masayo
    Ishimi, Katsuhiro
    Wakayama, Tatsuki
    Miyake, Jun
    Tomiyama, Masamitsu
    Kohno, Hideki
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (11) : 1509 - 1513
  • [23] The Living Genome of a Purple Nonsulfur Photosynthetic Bacterium: Overview of the Rhodobacter sphaeroides Transcriptome Landscapes
    Gomelsky, Mark
    Zeilstra-Ryalls, Jill H.
    GENOME EVOLUTION OF PHOTOSYNTHETIC BACTERIA, 2013, 66 : 179 - 203
  • [24] VIBRATIONAL DYNAMICS IN THE LIGHT-HARVESTING COMPLEXES OF THE PHOTOSYNTHETIC BACTERIUM RHODOBACTER-SPHAEROIDES
    CHACHISVILIS, M
    PULLERITS, T
    JONES, MR
    HUNTER, CN
    SUNDSTROM, V
    CHEMICAL PHYSICS LETTERS, 1994, 224 (3-4) : 345 - 351
  • [25] Stimulation of porphyrin production by application of an external magnetic field to a photosynthetic bacterium, Rhodobacter sphaeroides
    Utsunomiya, T
    Yamane, YI
    Watanabe, M
    Sasaki, K
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2003, 95 (04) : 401 - 404
  • [26] EFFICIENCY OF LIGHT ENERGY-CONVERSION TO HYDROGEN BY THE PHOTOSYNTHETIC BACTERIUM RHODOBACTER-SPHAEROIDES
    MIYAKE, J
    KAWAMURA, S
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1987, 12 (03) : 147 - 149
  • [27] A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides
    Puskas, A
    Greenberg, EP
    Kaplan, S
    Schaeffer, AL
    JOURNAL OF BACTERIOLOGY, 1997, 179 (23) : 7530 - 7537
  • [28] Decoherence dynamics of coherent electronic excited states in the photosynthetic purple bacterium Rhodobacter sphaeroides
    Liang, Xian-Ting
    Zhang, Wei-Min
    Zhuo, Yi-Zhong
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [29] Optimization of carotenoids extraction from Rhodobacter sphaeroides
    Gu, Zhenxin
    Chen, Deming
    Han, Yongbin
    Chen, Zhigang
    Gu, Feirong
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2008, 41 (06) : 1082 - 1088
  • [30] Effect of selenite on growth and protein synthesis in the phototrophic bacterium Rhodobacter sphaeroides
    Bebien, M
    Chauvin, JP
    Adriano, JM
    Grosse, S
    Verméglio, A
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (10) : 4440 - 4447