A POSTERIORI ERROR ESTIMATES FOR STABILISED MIXED FINITE ELEMENT METHODS FOR A NONLINEAR ELLIPTIC PROBLEM

被引:0
|
作者
Gonzalez, Maria [1 ,2 ]
Varela, Hiram [1 ,2 ]
机构
[1] Univ A Coruna, Dept Matemat, Campus Elvina s-n, La Coruna 15071, Spain
[2] Univ A Coruna, CITIC, Campus Elvina s-n, La Coruna 15071, Spain
关键词
nonlinear boundary value problem; mixed finite element; stabilisation; a posteriori error estimates; magnetostatics; FORMULATION;
D O I
10.1553/etna_vol55s706
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose new adaptive stabilised mixed finite element methods for a nonlinear elliptic boundary value problem of second order in divergence form that appears, among other applications, in magnetostatics. The method is based on a three-field formulation that is augmented with suitable residual least-squares terms arising from the constitutive and equilibrium equations and from the equation that defines the gradient as an additional unknown. We show that the resulting scheme is well posed and obtain optimal error estimates. We also develop an a posteriori error analysis of residual type and derive a simple a posteriori error indicator which is reliable and locally efficient. Finally, we include several numerical experiments that confirm the theoretical results.
引用
收藏
页码:706 / 725
页数:20
相关论文
共 50 条
  • [31] A posteriori error estimates in the finite element method for elliptic BVP with degeneration
    M. R. Timerbaev
    [J]. Differential Equations, 2014, 50 : 955 - 970
  • [32] A posteriori error estimates for nonlinear problems.: Lr-estimates for finite element discretizations of elliptic equations
    Verfurth, R
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (07): : 817 - 842
  • [33] A posteriori error estimates for primal hybrid finite element methods applied to Poisson problem
    Oliari, Victor B.
    Bosing, Paulo Rafael
    de Siqueira, Denise
    Devloo, Philippe R. B.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 441
  • [34] Robust a posteriori error estimates for stabilized finite element methods
    Tobiska, L.
    Verfuerth, R.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (04) : 1652 - 1671
  • [35] Recovery type a posteriori error estimates in finite element methods
    Zhang Z.
    Yan N.
    [J]. Korean Journal of Computational and Applied Mathematics, 2001, 8 (2): : 235 - 251
  • [36] Recovery type a posteriori error estimates in finite element methods
    Zhang, Z.
    Yan, N.
    [J]. Korean Journal of Computational and Applied Mathematics, 2001, 8 (02): : 235 - 251
  • [37] A priori and a posteriori error estimates of H1-Galerkin mixed finite element methods for elliptic optimal control problems
    Hou, Tianliang
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (10) : 2542 - 2554
  • [38] A Posteriori Error Estimates of Variational Discretization Mixed Finite Element Methods for Integro-Differential Optimal Control Problem
    Lu, Zuliang
    Liu, Dayong
    [J]. 2013 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE), 2013, : 37 - 41
  • [39] A posteriori error estimates for mixed finite element approximation of nonlinear quadratic optimal control problems
    Chen, Yanping
    Lu, Zuliang
    Fu, Min
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (01): : 37 - 53
  • [40] A posteriori error estimates for fourth order hyperbolic control problems by mixed finite element methods
    Hou, Chunjuan
    Guo, Zhanwei
    Guo, Lianhong
    [J]. BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)