Fractional continua for linear elasticity

被引:0
|
作者
Sumelka, W. [1 ]
Blaszczyk, T. [2 ]
机构
[1] Poznan Univ Tech, Inst Struct Engn, PL-60969 Poznan, Poland
[2] Czestochowa Tech Univ, Inst Math, PL-42201 Czestochowa, Poland
来源
ARCHIVES OF MECHANICS | 2014年 / 66卷 / 03期
关键词
non-local models; fractional calculus; CALCULUS; MECHANICS; MODELS;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
FRACTIONAL CONTINUA IS A GENERALISATION of the classical continuum body. This new concept shows the application of fractional calculus in continuum mechanics. The advantage is that the obtained description is non-local. This natural non-locality is inherently a consequence of fractional derivative definition which is based on the interval, thus variates from the classical approach where the definition is given in a point. In the paper, the application of fractional continua to one-dimensional problem of linear elasticity under small deformation assumption is presented.
引用
收藏
页码:147 / 172
页数:26
相关论文
共 50 条
  • [41] On the regularity of stresses in linear elasticity
    Koshelev, AI
    DOKLADY MATHEMATICS, 2001, 63 (03) : 421 - 424
  • [42] Boundary homogenization in linear elasticity
    El Jarroudi, M
    Addou, A
    Brillard, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (08): : 725 - 730
  • [43] Linear micro-elasticity
    Vardoulakis, I
    DEGRADATIONS AND INSTABILITIES IN GEOMATERIALS, 2004, (461): : 107 - 149
  • [44] IMPEDANCE EIGENVALUES IN LINEAR ELASTICITY
    Levitin, Michael
    Monk, Peter
    Selgas, Virginia
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (06) : 2433 - 2456
  • [45] LINEAR ELASTICITY AND PIEZOELECTRICITY IN PYROELECTRICS
    NELSON, DF
    LAX, M
    PHYSICAL REVIEW B, 1976, 13 (04): : 1785 - 1796
  • [46] The Compatibility Constraint in Linear Elasticity
    P. Podio-Guidugli
    Journal of elasticity and the physical science of solids, 2000, 59 : 393 - 398
  • [47] Thin structures in linear elasticity
    Brillard, A
    KORUS-2002: 6TH RUSSIAN-KOREAN INTERNATIONAL SYMPOSIUM ON SCIENCE AND TECHNOLOGY, PROCEEDINGS, 2002, : 197 - 201
  • [48] Considerations on incompressibility in linear elasticity
    Federico, S.
    Grillo, A.
    Wittum, G.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2009, 32 (01): : 81 - 87
  • [49] Linear Elasticity with Couple Stresses
    Braun, Manfred
    MECHANICS OF MICROSTRUCTURED SOLIDS 2: CELLULAR MATERIALS, FIBRE REINFORCED SOLIDS AND SOFT TISSUES: CELLULAR MATERIALS, FIBRE REINFORCED SOLIDS AND SOFT TISSUES, 2010, 50 : 1 - 8
  • [50] ON UNIVERSAL COERCIVITY IN LINEAR ELASTICITY
    Zhang, Kewei
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) : 298 - 322