Automatic segmentation of the left ventricle in a cardiac MR short axis image using blind morphological operation

被引:22
|
作者
Irshad, Mehreen [1 ]
Muhammad, Nazeer [2 ]
Sharif, Muhammad [1 ]
Yasmeen, Mussarat [1 ]
机构
[1] COMSATS Inst Informat Technol, Dept Comp Sci, Wah Cantt 47040, Pakistan
[2] COMSATS Inst Informat Technol, Dept Math, Wah Cantt 47040, Pakistan
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2018年 / 133卷 / 04期
关键词
ALGORITHMS; MODEL;
D O I
10.1140/epjp/i2018-11941-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Conventionally, cardiac MR image analysis is done manually. Automatic examination for analyzing images can replace the monotonous tasks of massive amounts of data to analyze the global and regional functions of the cardiac left ventricle (LV). This task is performed using MR images to calculate the analytic cardiac parameter like end-systolic volume, end-diastolic volume, ejection fraction, and myocardial mass, respectively. These analytic parameters depend upon genuine delineation of epicardial, endocardial, papillary muscle, and trabeculations contours. In this paper, we propose an automatic segmentation method using the sum of absolute differences technique to localize the left ventricle. Blind morphological operations are proposed to segment and detect the LV contours of the epicardium and endocardium, automatically. We test the benchmark Sunny Brook dataset for evaluation of the proposed work. Contours of epicardium and endocardium are compared quantitatively to determine contour's accuracy and observe high matching values. Similarity or overlapping of an automatic examination to the given ground truth analysis by an expert are observed with high accuracy as with an index value of 91.30%. The proposed method for automatic segmentation gives better performance relative to existing techniques in terms of accuracy.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Evaluation of a Semi-automatic Right Ventricle Segmentation Method on Short-Axis MR Images
    Pinar Yilmaz
    Karel Wallecan
    Wisnumurti Kristanto
    Jean-Paul Aben
    Adriaan Moelker
    Journal of Digital Imaging, 2018, 31 : 670 - 679
  • [32] Integrated approach for fully automatic left ventricle segmentation using adaptive iteration based parametric model with deep learning in short axis cardiac MRI
    Bhan A.
    Mangipudi P.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (08) : 11071 - 11092
  • [33] A variational approach for the segmentation of the left ventricle in MR cardiac images
    Paragios, N
    IEEE WORKSHOP ON VARIATIONAL AND LEVEL SET METHODS IN COMPUTER VISION, PROCEEDINGS, 2001, : 153 - 160
  • [34] Automated segmentation of left ventricle in cine cardiac mr images
    YingLi Lu
    Perry Radau
    Kim A Connelly
    Alexander Dick
    Graham A Wright
    Journal of Cardiovascular Magnetic Resonance, 12 (Suppl 1)
  • [35] An anisotropic GVF model for the MR image segmentation of left ventricle
    Wang, Gen
    Zhang, Jianwei
    Chen, Yunjie
    Luo, Chunyan
    Wang, Yu
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2010, 22 (11): : 1887 - 1891
  • [36] Cardiac MR Image Segmentation and Left Ventricle Surface Reconstruction Based on Level Set Method
    Zhou, Zeming
    You, Jianjie
    Heng, Pheng Ann
    Xia, Deshen
    MEDICINE MEETS VIRTUAL REALITY 13: THE MAGICAL NEXT BECOMES THE MEDICAL NOW, 2005, 111 : 629 - 632
  • [37] Automatic segmentation of right ventricle in cardiac cine MR images using a saliency analysis
    Atehortua, Angelica
    Zuluaga, Maria A.
    Garcia, Juan D.
    Romero, Eduardo
    MEDICAL PHYSICS, 2016, 43 (12) : 6270 - 6281
  • [38] Transfer Learning for the Fully Automatic Segmentation of Left Ventricle Myocardium in Porcine Cardiac Cine MR Images
    Chen, Antong
    Zhou, Tian
    Icke, Ilknur
    Parimal, Sarayu
    Dogdas, Belma
    Forbes, Joseph
    Sampath, Smita
    Bagchi, Ansuman
    Chin, Chih-Liang
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 : 21 - 31
  • [39] An SPCNN-GVF-based approach for the automatic segmentation of left ventricle in cardiac cine MR images
    Yurun Ma
    Li Wang
    Yide Ma
    Min Dong
    Shiqiang Du
    Xiaoguang Sun
    International Journal of Computer Assisted Radiology and Surgery, 2016, 11 : 1951 - 1964
  • [40] An SPCNN-GVF-based approach for the automatic segmentation of left ventricle in cardiac cine MR images
    Ma, Yurun
    Wang, Li
    Ma, Yide
    Dong, Min
    Du, Shiqiang
    Sun, Xiaoguang
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2016, 11 (11) : 1951 - 1964