Geometric Properties for a New Class of Analytic Functions Defined by a Certain Operator

被引:5
|
作者
Breaz, Daniel [1 ]
Murugusundaramoorthy, Gangadharan [2 ]
Cotirla, Luminita-Ioana [3 ]
机构
[1] 1 Decembrie 1918 Univ Alba Iulia, Dept Math, Alba Lulia 510009, Romania
[2] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[3] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 12期
关键词
holomorphic function; Fekete-Szego problem; analytic functions; upper bounds; starlike function; Q-STARLIKE FUNCTIONS; COEFFICIENT INEQUALITIES; Q-DERIVATIVES; SUBCLASSES; CONVEX; (P;
D O I
10.3390/sym14122624
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of this paper is to define and explore a certain class of analytic functions involving the (p,q)-Wanas operator related to the Janowski functions. We discuss geometric properties, growth and distortion bounds, necessary and sufficient conditions, the Fekete-Szego problem, partial sums, and convex combinations for the newly defined class. We solve the Fekete-Szego problem related to the convolution product and discuss applications to probability distribution.
引用
收藏
页数:16
相关论文
共 50 条