Identification of parameters of a bi-linear cohesive-zone model using analytical solutions for mode-I delamination

被引:22
|
作者
Skec, Leo [1 ]
机构
[1] Univ Rijeka, Fac Civil Engn, Radmile Matejcic 3, Rijeka 51000, Croatia
关键词
DCB test; Mode-I delamination; Cohesive-zone model; Parameter identification; Analytical solution; Timoshenko beam theory; Linear-elastic fracture mechanics; DOUBLE-CANTILEVER BEAM; FRACTURE ENERGY; INTERLAMINAR FRACTURE; ADHESIVE; SIMULATION; INTERFACE; GROWTH; COMPOSITES; RESISTANCE; JOINTS;
D O I
10.1016/j.engfracmech.2019.04.019
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A novel parameter identification method for a bi-linear cohesive-zone model (CZM), based on closed-form analytical solutions for mode-I delamination in a double cantilever beam (DCB), is proposed. The parameters to be identified are the area under the traction-separation law of the CZM, the maximum traction and the initial (linear-elastic) stiffness. Using the three-phase analytical solution, each parameter is identified separately from a different phase. The proposed method requires only the measurement of the load-point displacement and the applied load, while the measurement of the crack length is not necessary. Compared to methods that use complex numerical models and sophisticated optimisation algorithms, the proposed method is extremely fast and robust. Using experimental data from the literature, parameter identification results are presented. It is shown that the bi-linear CZM with identified parameters can be used to model delamination in a DCB for many different combinations of bulk material and adhesive with an acceptable level of accuracy, except for the case of delamination of composites with fibre bridging.
引用
收藏
页码:558 / 577
页数:20
相关论文
共 43 条
  • [11] A thermodynamically consistent derivation of a frictional-damage cohesive-zone model with different mode i and mode II fracture energies
    Serpieri, R.
    Sacco, E.
    Alfano, G.
    Serpieri, R., 1600, Elsevier Ltd (49): : 13 - 25
  • [12] Mode I cohesive zone model parameters identification and comparison of measurement techniques based on uncertainty estimation
    Jaillon, Agathe
    Jumel, Julien
    Lachaud, Frederic
    Paroissien, Eric
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 191 (191-192) : 577 - 587
  • [13] Size effects on parameters of cohesive zone model in mode I fracture of limestone
    Khoramishad, H.
    Akbardoost, J.
    Ayatollahi, M. R.
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2014, 23 (04) : 588 - 605
  • [14] Assessment of Cohesive Parameters Using High Dimensional Model Representation for Mixed Mode Cohesive Zone Model
    Rao, B. Kesava
    Balu, A. S.
    STRUCTURES, 2019, 19 : 156 - 160
  • [15] Mode I cohesive zone model parameters identification and comparison of measurement techniques for robustness to the law shape evaluation
    Jaillon, Agathe
    Jumel, Julien
    Paroissien, Eric
    Lachaud, Frederic
    JOURNAL OF ADHESION, 2020, 96 (1-4): : 272 - 299
  • [16] A modified mode I cohesive zone model for the delamination growth in DCB laminates with the effect of fiber bridging
    Gong, Yu
    Hou, Yixin
    Zhao, Libin
    Li, Wangchang
    Zhang, Jianyu
    Hu, Ning
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 176
  • [17] Evaluation of Adhesive Properties Using Cohesive Zone Model : Mode I
    Lee, Chan-Joo
    Lee, Sang-Kon
    Ko, Dae-Cheol
    Kim, Byung-Min
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2009, 33 (05) : 474 - 481
  • [18] Analytical solutions for peeling using beam-on-foundation model and cohesive zone
    Plaut, RH
    Ritchie, JL
    JOURNAL OF ADHESION, 2004, 80 (04): : 313 - 331
  • [19] A new mechanism based cohesive zone model for Mode I delamination coupled with fiber bridging of composite laminates
    Duan, Qingfeng
    Hu, Haixiao
    Cao, Dongfeng
    Cai, Wei
    Li, Shuxin
    COMPOSITE STRUCTURES, 2024, 332
  • [20] A novel rate-dependent cohesive zone model for simulation of mode I dynamic delamination in laminated composites
    Ekhtiyari, Amin
    Shokrieh, Mahmood M.
    COMPOSITE STRUCTURES, 2022, 281