Equilibria for set-valued maps on nonsmooth domains

被引:0
|
作者
Ben-El-Mechaiekh, Hichem [1 ]
机构
[1] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
关键词
Equilibria; strongly approachable set-valued maps; nonsmooth domains; approximative absolute neighborhood retracts; lipschitzian retracts; Clarke's tangent cone; Euler characteristic; trivial shape;
D O I
10.1007/s11784-008-0074-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set-valued map defined on a compact lipschitzian retract of a normed space with nontrivial Euler characteristic and satisfying (i) a strong graph approximation property and (ii) a tangency condition expressed in terms of Clarke's tangent cone, admits an equilibrium. This result extends in a simple way known solvability theorems to a large class of nonconvex set-valued maps defined on nonsmooth domains.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 50 条
  • [21] A SURJECTIVITY THEOREM FOR SET-VALUED MAPS
    SACH, PH
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5C (01): : 411 - 436
  • [22] A Note on Quasiconvex Set-Valued Maps
    C. S. Lalitha
    Sonia Davar
    OPSEARCH, 2003, 40 (1) : 52 - 61
  • [23] Random Lifting of Set-Valued Maps
    Capuani, Rossana
    Marigonda, Antonio
    Mogentale, Marta
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 297 - 305
  • [24] On cone convexity of set-valued maps
    Kuroiwa, D
    Tanaka, T
    Truong, XDH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (03) : 1487 - 1496
  • [25] Invariant measures of set-valued maps
    Artstein, Z
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (02) : 696 - 709
  • [26] Convexity Criteria for Set-Valued Maps
    Pham Huu Sach
    Nguyen Dong Yen
    Set-Valued Analysis, 1997, 5 (1): : 37 - 45
  • [27] APPROXIMATION OF NONCONVEX SET-VALUED MAPS
    BENELMECHAIEKH, H
    DEGUIRE, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (05): : 379 - 384
  • [28] STABLE APPROXIMATIONS OF SET-VALUED MAPS
    AUBIN, JP
    WETS, RJB
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1988, 5 (06): : 519 - 535
  • [29] NASH EQUILIBRIUM FOR SET-VALUED MAPS
    GUILLERME, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 187 (03) : 705 - 715
  • [30] TOPOLOGICAL ENTROPY FOR SET-VALUED MAPS
    Carrasco-Olivera, Dante
    Metzger Alvan, Roger
    Morales Rojas, Carlos Arnoldo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3461 - 3474