Extending mixtures of factor models using the restricted multivariate skew-normal distribution

被引:49
|
作者
Lin, Tsung-I [1 ,2 ]
McLachlan, Geoffrey J. [3 ]
Lee, Sharon X. [3 ]
机构
[1] Natl Chung Hsing Univ, Inst Stat, Taichung 402, Taiwan
[2] China Med Univ, Dept Publ Hlth, Taichung 404, Taiwan
[3] Univ Queensland, Dept Math, St Lucia, Qld 4072, Australia
关键词
Clustering; Data reduction; ECM algorithm; Factor analyzer; rMSN distribution; Skewness; HIGH-DIMENSIONAL DATA; MAXIMUM-LIKELIHOOD-ESTIMATION; T-FACTOR ANALYZERS; SIMULATING DATA; EM ALGORITHM; INFERENCE; PERFORMANCE; VALUES;
D O I
10.1016/j.jmva.2015.09.025
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The mixture of factor analyzers (MFA) model provides a powerful tool for analyzing high-dimensional data as it can reduce the number of free parameters through its factor-analytic representation of the component covariance matrices. This paper extends the MFA model to incorporate a restricted version of the multivariate skew-normal distribution for the latent component factors, called mixtures of skew-normal factor analyzers (MSNFA). The proposed MSNFA model allows us to relax the need of the normality assumption for the latent factors in order to accommodate skewness in the observed data. The MSNFA model thus provides an approach to model-based density estimation and clustering of high-dimensional data exhibiting asymmetric characteristics. A computationally feasible Expectation Conditional Maximization (ECM) algorithm is developed for computing the maximum likelihood estimates of model parameters. The potential of the proposed methodology is exemplified using both real and simulated data. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:398 / 413
页数:16
相关论文
共 50 条
  • [1] Mixtures of multivariate restricted skew-normal factor analyzer models in a Bayesian framework
    Maleki, Mohsen
    Wraith, Darren
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (03) : 1039 - 1053
  • [2] Mixtures of multivariate restricted skew-normal factor analyzer models in a Bayesian framework
    Mohsen Maleki
    Darren Wraith
    [J]. Computational Statistics, 2019, 34 : 1039 - 1053
  • [3] Multivariate measurement error models based on scale mixtures of the skew-normal distribution
    Lachos, V. H.
    Labra, F. V.
    Bolfarine, H.
    Ghosh, Pulak
    [J]. STATISTICS, 2010, 44 (06) : 541 - 556
  • [4] The multivariate skew-normal distribution
    Azzalini, A
    DallaValle, A
    [J]. BIOMETRIKA, 1996, 83 (04) : 715 - 726
  • [5] Linear orderings of the scale mixtures of the multivariate skew-normal distribution
    Amiri, Mehdi
    Izadkhah, Salman
    Jamalizadeh, Ahad
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 179
  • [6] A class of multivariate skew-normal models
    Arjun K. Gupta
    John T. Chen
    [J]. Annals of the Institute of Statistical Mathematics, 2004, 56 : 305 - 315
  • [7] A class of multivariate skew-normal models
    Gupta, AK
    Chen, JT
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (02) : 305 - 315
  • [8] Multivariate geometric skew-normal distribution
    Kundu, Debasis
    [J]. STATISTICS, 2017, 51 (06) : 1377 - 1397
  • [9] Robust mixtures of factor analysis models using the restricted multivariate skew-t distribution
    Lin, Tsung-I
    Wang, Wan-Lun
    McLachlan, Geoffrey J.
    Lee, Sharon X.
    [J]. STATISTICAL MODELLING, 2018, 18 (01) : 50 - 72
  • [10] A multivariate modified skew-normal distribution
    Mondal, Sagnik
    Arellano-Valle, Reinaldo B.
    Genton, Marc G.
    [J]. STATISTICAL PAPERS, 2024, 65 (02) : 511 - 555