Multivariate measurement error models based on scale mixtures of the skew-normal distribution

被引:29
|
作者
Lachos, V. H. [1 ]
Labra, F. V. [1 ]
Bolfarine, H. [2 ]
Ghosh, Pulak [3 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Estat, BR-13083859 Campinas, SP, Brazil
[2] Univ Sao Paulo, Dept Estat, Sao Paulo, Brazil
[3] Indian Inst Management, Dept Quantat Methods & Informat Sci, Bangalore 560076, Karnataka, India
关键词
EM algorithm; scale mixtures of the skew-normal distribution; Mahalanobis distance; measurement error models; MAXIMUM-LIKELIHOOD-ESTIMATION; LOCAL INFLUENCE; EM; ALGORITHM; SELECTION;
D O I
10.1080/02331880903236926
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.
引用
收藏
页码:541 / 556
页数:16
相关论文
共 50 条
  • [1] Linear orderings of the scale mixtures of the multivariate skew-normal distribution
    Amiri, Mehdi
    Izadkhah, Salman
    Jamalizadeh, Ahad
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 179
  • [2] Bayesian measurement error models using finite mixtures of scale mixtures of skew-normal distributions
    Barbosa Cabral, Celso Romulo
    de Souza, Nelson Lima
    Leao, Jeremias
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (03) : 623 - 644
  • [3] Skew-normal distribution in the multivariate null intercept measurement error model
    Labra, F. V.
    Aoki, R.
    Garibay, V.
    Lachos, V. H.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2011, 25 (02) : 145 - 170
  • [4] Multivariate tail conditional expectation for scale mixtures of skew-normal distribution
    Mousavi, Seyedjavad Ahmadi
    Amirzadeh, Vahid
    Rezapour, Mohsen
    Sheikhy, Ayob
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (17) : 3167 - 3181
  • [5] Scale and shape mixtures of multivariate skew-normal distributions
    Arellano-Valle, Reinaldo B.
    Ferreira, Clecio S.
    Genton, Marc G.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 98 - 110
  • [6] Extending mixtures of factor models using the restricted multivariate skew-normal distribution
    Lin, Tsung-I
    McLachlan, Geoffrey J.
    Lee, Sharon X.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 398 - 413
  • [7] The multivariate skew-normal distribution
    Azzalini, A
    DallaValle, A
    [J]. BIOMETRIKA, 1996, 83 (04) : 715 - 726
  • [8] Characteristic functions of scale mixtures of multivariate skew-normal distributions
    Kim, Hyoung-Moon
    Genton, Marc G.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (07) : 1105 - 1117
  • [9] Multivariate measures of skewness for the scale mixtures of skew-normal distributions
    Kim, Hyoung-Moon
    Zhao, Jun
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2018, 25 (02) : 109 - 130
  • [10] Nonlinear regression models based on scale mixtures of skew-normal distributions
    Garay, Aldo M.
    Lachos, Victor H.
    Abanto-Valle, Carlos A.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (01) : 115 - 124