Ensemble Filtering and Low-Resolution Model Error: Covariance Inflation, Stochastic Parameterization, and Model Numerics
被引:16
|
作者:
Grooms, I.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USANYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USA
Grooms, I.
[1
]
Lee, Y.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USANYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USA
Lee, Y.
[1
]
Majda, A. J.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USANYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USA
Majda, A. J.
[1
]
机构:
[1] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10012 USA
The use of under-resolved models in ensemble data assimilation schemes leads to two kinds of model errors: truncation errors associated with discretization of the large-scale dynamics and errors associated with interactions with subgrid scales. Multiplicative and additive covariance inflation can be used to account for model errors in ensemble Kalman filters, but they do not reduce the model error. Truncation errors can be reduced by increasing the accuracy of the numerical discretization of the large-scale dynamics, and subgrid-scale parameterizations can reduce errors associated with subgrid-scale interactions. Stochastic subgrid-scale parameterizations both reduce the model error and inflate the ensemble spread, so their effectiveness in ensemble assimilation schemes can be gauged by comparing with covariance inflation techniques. The effects of covariance inflation, stochastic parameterizations, and model numerics in two-layer periodic quasigeostrophic turbulence are compared on an f plane and on a plane. The stochastic backscatter schemes used here model backscatter in the inverse cascade regime of quasigeostrophic turbulence, as appropriate to eddy-permitting ocean models. Covariance inflation improves the performance of a benchmark model with no parameterizations and second-order numerics. Fourth-order spatial discretization and the stochastic parameterizations, alone and in combination, are superior to covariance inflation. In these experiments fourth-order numerics and stochastic parameterizations lead to similar levels of improvement in filter performance even though the climatology of models without stochastic parameterizations is poor.
机构:
Univ Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
Beijing Key Lab Knowledge Engn Mat Sci, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
Guo, Xuxu
Tan, Rui
论文数: 0引用数: 0
h-index: 0
机构:
China Energy Investment Corp Sci & Technol Res In, Nanjing 210033, Peoples R ChinaUniv Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
Tan, Rui
Yang, Mingyang
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Sch Mech Engn, China State Key Lab Tribol, Beijing 100084, Peoples R ChinaUniv Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
Yang, Mingyang
He, Xinrong
论文数: 0引用数: 0
h-index: 0
机构:
China Energy Investment Corp Sci & Technol Res In, Nanjing 210033, Peoples R ChinaUniv Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
He, Xinrong
Guo, Jia
论文数: 0引用数: 0
h-index: 0
机构:
China Energy Investment Corp Sci & Technol Res In, Nanjing 210033, Peoples R ChinaUniv Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
Guo, Jia
Fan, Suli
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
Beijing Key Lab Knowledge Engn Mat Sci, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
Fan, Suli
Hu, Junnan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
Beijing Key Lab Knowledge Engn Mat Sci, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
Hu, Junnan
Zhang, Taohong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
Beijing Key Lab Knowledge Engn Mat Sci, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
Zhang, Taohong
Wulamu, Aziguli
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
Beijing Key Lab Knowledge Engn Mat Sci, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing USTB, Sch Comp & Commun Engn, Dept Comp, Beijing 100083, Peoples R China
机构:
Univ Adelaide, Australian Inst Machine Learning, Adelaide, SA 5005, AustraliaUniv Adelaide, Australian Inst Machine Learning, Adelaide, SA 5005, Australia
Chojnacki, Wojciech
Szpak, Zygmunt L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Adelaide, Australian Inst Machine Learning, Adelaide, SA 5005, AustraliaUniv Adelaide, Australian Inst Machine Learning, Adelaide, SA 5005, Australia
机构:
Univ Buenos Aires, CONICET, Ctr Invest Mar & Atmosfera, Buenos Aires, DF, Argentina
Univ Nacl Nordeste, FaCENA, Dept Math, Corrientes, ArgentinaUniv Buenos Aires, CONICET, Ctr Invest Mar & Atmosfera, Buenos Aires, DF, Argentina
Scheffler, Guillermo
论文数: 引用数:
h-index:
机构:
Ruiz, Juan
Pulido, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Reading, Dept Meteorol, Data Assimilat Res Ctr, Reading, Berks, England
Univ Nacl Nordeste, FaCENA, Dept Phys, Corrientes, Argentina
Consejo Nacl Invest Cient & Tecn, Corrientes, ArgentinaUniv Buenos Aires, CONICET, Ctr Invest Mar & Atmosfera, Buenos Aires, DF, Argentina