MALDI Efficiency of Metabolites Quantitatively Associated with their Structural Properties: A Quantitative Structure-Property Relationship (QSPR) Approach

被引:14
|
作者
Yukihira, Daichi [1 ]
Miura, Daisuke [2 ]
Fujimura, Yoshinori [2 ]
Umemura, Yoshikatsu [3 ]
Yamaguchi, Shinichi [3 ]
Funatsu, Shinji [3 ]
Yamazaki, Makoto [4 ]
Ohta, Tetsuya [4 ]
Inoue, Hiroaki [4 ]
Shindo, Mitsuru [5 ]
Wariishi, Hiroyuki [2 ,6 ,7 ]
机构
[1] Kyushu Univ, Grad Sch Bioresource & Bioenvironm Sci, Higashi Ku, Fukuoka, Japan
[2] Kyushu Univ, Innovat Ctr Med Redox Nav, Higashi Ku, Fukuoka, Japan
[3] Shimadzu Co Ltd, Analyt & Measuring Instruments Div, Life Sci Business Dept, MS Business Unit,Nakagyo Ku, Kyoto, Japan
[4] Mitsubishi Tanabe Pharma Corp, Div Res, Adv Med Res Labs, Toda, Saitama, Japan
[5] Kyushu Univ, Inst Mat Chem & Engn, Kasuga, Fukuoka 816, Japan
[6] Kyushu Univ, Bioarchitecture Ctr, Higashi Ku, Fukuoka, Japan
[7] Kyushu Univ, Fac Arts & Sci, Nishi Ku, Fukuoka 812, Japan
基金
日本科学技术振兴机构;
关键词
MALDI-MS; Metabolite analysis; QSPR; MASS-SPECTROMETRY; AMINO-ACIDS; MATRIX;
D O I
10.1007/s13361-013-0772-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) experiments require a suitable match of the matrix and target compounds to achieve a selective and sensitive analysis. However, it is still difficult to predict which metabolites are ionizable with a given matrix and which factors lead to an efficient ionization. In the present study, we extracted structural properties of metabolites that contribute to their ionization in MALDI-MS analyses exploiting our experimental data set. The MALDI-MS experiment was performed for 200 standard metabolites using 9-aminoacridine (9-AA) as the matrix. We then developed a prediction model for the ionization profiles (both the ionizability and ionization efficiency) of metabolites using a quantitative structure-property relationship (QSPR) approach. The classification model for the ionizability achieved a 91 % accuracy, and the regression model for the ionization efficiency reached a rank correlation coefficient of 0.77. An analysis of the descriptors contributing to such model construction suggested that the proton affinity is a major determinant of the ionization, whereas some substructures hinder efficient ionization. This study will lead to the development of more rational and predictable MALDI-MS analyses.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [41] Quantitative Structure-Property Relationship (QSPR) of Plant Phenolic Compounds in Rapeseed Oil and Comparison of Antioxidant Measurement Methods
    Platzer, Melanie
    Kiese, Sandra
    Asam, Tobias
    Schneider, Franziska
    Tybussek, Thorsten
    Herfellner, Thomas
    Schweiggert-Weisz, Ute
    Eisner, Peter
    PROCESSES, 2022, 10 (07)
  • [42] A quantitative structure-property relationship (QSPR) for estimating solid material-air partition coefficients of organic compounds
    Huang, Lei
    Jolliet, Olivier
    INDOOR AIR, 2019, 29 (01) : 79 - 88
  • [43] Quantitative structure-property relationship (QSPR) study for predicting gas-liquid critical temperatures of organic compounds
    Zhou, Lulu
    Wang, Beibei
    Jiang, Juncheng
    Pan, Yong
    Wang, Qingsheng
    THERMOCHIMICA ACTA, 2017, 655 : 112 - 116
  • [44] Molecular modeling of polymers .16. Gaseous diffusion in polymers: A quantitative structure-property relationship (QSPR) analysis
    Patel, HC
    Tokarski, JS
    Hopfinger, AJ
    PHARMACEUTICAL RESEARCH, 1997, 14 (10) : 1349 - 1354
  • [45] Modeling of the henry constant of a series of pesticides: Quantitative structure-property relationship approach
    Bouakkadia A.
    Driouche Y.
    Kertiou N.
    Messadi D.
    International Journal of Safety and Security Engineering, 2020, 10 (03) : 389 - 396
  • [46] Estimation of the Heat Capacity of Ionic Liquids: A Quantitative Structure-Property Relationship Approach
    Sattari, Mehdi
    Gharagheizi, Farhad
    Ilani-Kashkouli, Poorandokht
    Mohammadi, Amir H.
    Ramjugernath, Deresh
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (36) : 13217 - 13221
  • [47] Estimation of physicochemical properties from the structure-property relationship: A new approach
    Golovanov, IB
    Tsygankova, IG
    QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS, 2001, 19 (06): : 554 - 564
  • [48] Probabilistic Mean Quantitative Structure-Property Relationship Modeling of Jet Fuel Properties
    Hall, Clemens
    Creton, Benoit
    Rauch, Bastian
    Bauder, Uwe
    Aigner, Manfred
    ENERGY & FUELS, 2022, 36 (01) : 463 - 479
  • [49] Quantitative Structure-Property Relationship: XVII. Properties of Branched Hydrocarbon Molecules
    I. B. Golovanov
    S. M. Zhenodarova
    Russian Journal of General Chemistry, 2004, 74 : 828 - 833
  • [50] Quantitative structure-property relationship: XVII. Properties of branched hydrocarbon molecules
    Golovanov, IB
    Zhenodarova, SM
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2004, 74 (06) : 828 - 833