MALDI Efficiency of Metabolites Quantitatively Associated with their Structural Properties: A Quantitative Structure-Property Relationship (QSPR) Approach

被引:14
|
作者
Yukihira, Daichi [1 ]
Miura, Daisuke [2 ]
Fujimura, Yoshinori [2 ]
Umemura, Yoshikatsu [3 ]
Yamaguchi, Shinichi [3 ]
Funatsu, Shinji [3 ]
Yamazaki, Makoto [4 ]
Ohta, Tetsuya [4 ]
Inoue, Hiroaki [4 ]
Shindo, Mitsuru [5 ]
Wariishi, Hiroyuki [2 ,6 ,7 ]
机构
[1] Kyushu Univ, Grad Sch Bioresource & Bioenvironm Sci, Higashi Ku, Fukuoka, Japan
[2] Kyushu Univ, Innovat Ctr Med Redox Nav, Higashi Ku, Fukuoka, Japan
[3] Shimadzu Co Ltd, Analyt & Measuring Instruments Div, Life Sci Business Dept, MS Business Unit,Nakagyo Ku, Kyoto, Japan
[4] Mitsubishi Tanabe Pharma Corp, Div Res, Adv Med Res Labs, Toda, Saitama, Japan
[5] Kyushu Univ, Inst Mat Chem & Engn, Kasuga, Fukuoka 816, Japan
[6] Kyushu Univ, Bioarchitecture Ctr, Higashi Ku, Fukuoka, Japan
[7] Kyushu Univ, Fac Arts & Sci, Nishi Ku, Fukuoka 812, Japan
基金
日本科学技术振兴机构;
关键词
MALDI-MS; Metabolite analysis; QSPR; MASS-SPECTROMETRY; AMINO-ACIDS; MATRIX;
D O I
10.1007/s13361-013-0772-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) experiments require a suitable match of the matrix and target compounds to achieve a selective and sensitive analysis. However, it is still difficult to predict which metabolites are ionizable with a given matrix and which factors lead to an efficient ionization. In the present study, we extracted structural properties of metabolites that contribute to their ionization in MALDI-MS analyses exploiting our experimental data set. The MALDI-MS experiment was performed for 200 standard metabolites using 9-aminoacridine (9-AA) as the matrix. We then developed a prediction model for the ionization profiles (both the ionizability and ionization efficiency) of metabolites using a quantitative structure-property relationship (QSPR) approach. The classification model for the ionizability achieved a 91 % accuracy, and the regression model for the ionization efficiency reached a rank correlation coefficient of 0.77. An analysis of the descriptors contributing to such model construction suggested that the proton affinity is a major determinant of the ionization, whereas some substructures hinder efficient ionization. This study will lead to the development of more rational and predictable MALDI-MS analyses.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] Bioinformatics and Quantitative Structure-Property Relationship (QSPR) Models
    Gonzalez-Diaz, Humberto
    CURRENT BIOINFORMATICS, 2013, 8 (04) : 387 - 389
  • [2] Stoichiometric approach to quantitative structure-property relationships (QSPR)
    Fishtik, I
    Datta, R
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (04): : 1259 - 1268
  • [3] Evaluating the properties of ionic liquid at variable temperatures and pressures by quantitative structure-property relationship (QSPR)
    Zhang, Shuying
    Jia, Qingzhu
    Yan, Fangyou
    Xia, Shuqian
    Wang, Qiang
    CHEMICAL ENGINEERING SCIENCE, 2021, 231
  • [4] How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR)
    Dearden, J. C.
    Cronin, M. T. D.
    Kaiser, K. L. E.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2009, 20 (3-4) : 241 - 266
  • [5] A quantitative structure-property relationship (QSPR) study of singlet oxygen generation by pteridines
    Buglak, Andrey A.
    Telegina, Taisiya A.
    Kritsky, Mikhail S.
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2016, 15 (06) : 801 - 811
  • [6] The QSPR (quantitative structure-property relationship) study about the anaerobic biodegradation of chlorophenols
    Dai, Youzhi
    Yang, Dasen
    Zhu, Fei
    Wu, Lanyan
    Yang, Xiangzheng
    Li, Jianhua
    CHEMOSPHERE, 2006, 65 (11) : 2427 - 2433
  • [7] Predicting normal densities of amines using quantitative structure-property relationship (QSPR)
    Stec, M.
    Spietz, T.
    Wieclaw-Solny, L.
    Tatarczuk, A.
    Krotki, A.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2015, 26 (11) : 893 - 904
  • [8] Prediction of Dielectric Constant in Series of Polymers by Quantitative Structure-Property Relationship (QSPR)
    Ascencio-Medina, Estefania
    He, Shan
    Daghighi, Amirreza
    Iduoku, Kweeni
    Casanola-Martin, Gerardo M.
    Arrasate, Sonia
    Gonzalez-Diaz, Humberto
    Rasulev, Bakhtiyor
    POLYMERS, 2024, 16 (19)
  • [9] Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study
    Platzer, Melanie
    Kiese, Sandra
    Tybussek, Thorsten
    Herfellner, Thomas
    Schneider, Franziska
    Schweiggert-Weisz, Ute
    Eisner, Peter
    FRONTIERS IN NUTRITION, 2022, 9
  • [10] A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for predicting physical properties of organic compounds
    Espinosa, G
    Yaffe, D
    Arenas, A
    Cohen, Y
    Giralt, F
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (12) : 2757 - 2766