Enhancing the piezoelectric modulus of wurtzite AlN by ion beam strain engineering

被引:11
|
作者
Fiedler, Holger [1 ]
Leveneur, Jerome [1 ,2 ]
Mitchell, David R. G. [3 ]
Arulkumaran, Subramaniam [4 ,5 ]
Ng, Geok Ing [4 ,5 ]
Alphones, Arokiaswami [6 ]
Kennedy, John [1 ,2 ]
机构
[1] GNS Sci, Natl Isotope Ctr, Lower Hutt 5010, New Zealand
[2] MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6011, New Zealand
[3] Univ Wollongong, Electron Microscopy Ctr, Innovat Campus, Wollongong, NSW 2519, Australia
[4] Nanyang Technol Univ, Temasek Labs, Singapore 639798, Singapore
[5] Nagoya Univ, Ctr Integrated Res Future Elect CIRFE, IMaSS, Nagoya, Aichi 4648303, Japan
[6] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
澳大利亚研究理事会;
关键词
IMPLANTATION DAMAGE FORMATION; ALUMINUM NITRIDE; THIN-FILMS; GAN; MECHANISMS; GROWTH;
D O I
10.1063/5.0031047
中图分类号
O59 [应用物理学];
学科分类号
摘要
The piezoelectric modulus of wurtzite aluminum nitride (AlN) is a critical material parameter for electrical components, ultimately contributing to the energy efficiency and achievable bandwidth of modern communication devices. Here, we demonstrate that the introduction of metallic point-defects (Ti, Zr, Hf) improves the piezoelectric modulus of as-received, unstrained, epitaxially grown AlN. The metals are incorporated by ion implantation with an acceleration energy of 30keV to a fluence of 10(15) at cm(-2), which causes an elongation along the wurtzite c-axis. The stored internal strain energy increases the piezoelectric polarization of the thin AlN layer. This can equivalently be described by an enhancement of the piezoelectric modulus d(33). The incorporation of 0.1at. % Ti enhances the piezoelectric modulus by similar to 30%; significantly exceeding gains obtained by alloying with the same amount of Sc.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] AlN thin film deposition by ion beam sputtering
    Belyanin, A.F.
    Semenov, A.P.
    Haltanova, V.M.
    Journal of Wide Bandgap Materials, 1997, 5 (04): : 336 - 340
  • [22] Ion beam synthesis of AlN nanostructured thin films
    Valcueva, E.
    Manova, D.
    Mandl, S.
    Alexandrova, S.
    Lutz, J.
    Dimitrov, S.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2007, 9 (01): : 166 - 169
  • [23] Comparison of wurtzite atomistic and piezoelectric continuum strain models: Implications for the electronic band structure
    Barettin, D.
    Madsen, S.
    Lassen, B.
    Willatzen, M.
    SUPERLATTICES AND MICROSTRUCTURES, 2010, 47 (01) : 134 - 138
  • [24] Large out-of-plane piezoelectric response of wurtzite InN under biaxial strain
    Namir, O.
    Kioseoglou, J.
    Komninou, Ph
    Karakostas, Th
    Belabbas, I
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2021, 29 (06)
  • [25] Enhancing Electrocatalytic Water Splitting by Strain Engineering
    You, Bo
    Tang, Michael T.
    Tsai, Charlie
    Abild-Pedersen, Frank
    Zheng, Xiaolin
    Li, Hong
    ADVANCED MATERIALS, 2019, 31 (17)
  • [26] Band gap engineering of wurtzite and zinc-blende GaN/AlN superlattices from first principles
    Cui, X. Y.
    Delley, B.
    Stampfl, C.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (10)
  • [27] Characterization of a Piezoelectric AlN Beam Array in Air and Fluid for an Artificial Basilar Membrane
    Hyejin Jeon
    Jongmoon Jang
    Sangwon Kim
    Hongsoo Choi
    Electronic Materials Letters, 2018, 14 : 101 - 111
  • [28] Characterization of a Piezoelectric AlN Beam Array in Air and Fluid for an Artificial Basilar Membrane
    Jeon, Hyejin
    Jang, Jongmoon
    Kim, Sangwon
    Choi, Hongsoo
    ELECTRONIC MATERIALS LETTERS, 2018, 14 (02) : 101 - 111
  • [29] ENGINEERING A HIGH-YIELD GLUTATHIONE STRAIN OF Hansenula polymorpha USING ION BEAM IMPLANTATION
    Qian, Weidong
    Fu, Yunfang
    Cai, Changlong
    PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, 2013, 43 (06): : 577 - 585
  • [30] Ion beam assisted deposition of AlN monolithic films and Al/AlN multilayers: a comparative study
    Research Cent Rossendorf , Dresden, Germany
    Surf Coat Technol, 1 (334-339):