Optimal designs for regression models with forced measurements at baseline

被引:0
|
作者
Fedorov, VV [1 ]
Leonov, S [1 ]
机构
[1] GlaxoSmithKline, Collegeville, PA 19426 USA
关键词
locally optimal designs; random effects; baseline; placebo effect; multiple measurements per patient;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss the construction of D-optimal designs for regression models with forced measurements. Such models may be used in dose response studies where a baseline measurement is taken for all patients, that is forced in the design.
引用
收藏
页码:61 / 69
页数:9
相关论文
共 50 条
  • [21] Constructing K-optimal designs for regression models
    Zongzhi Yue
    Xiaoqing Zhang
    P. van den Driessche
    Julie Zhou
    [J]. Statistical Papers, 2023, 64 : 205 - 226
  • [22] D-OPTIMAL DESIGNS FOR POISSON REGRESSION MODELS
    Russell, K. G.
    Woods, D. C.
    Lewis, S. M.
    Eccleston, J. A.
    [J]. STATISTICA SINICA, 2009, 19 (02) : 721 - 730
  • [23] Constrained optimal discrimination designs for Fourier regression models
    Stefanie Biedermann
    Holger Dette
    Philipp Hoffmann
    [J]. Annals of the Institute of Statistical Mathematics, 2009, 61 : 143 - 157
  • [24] Bayesian and maximin optimal designs for heteroscedastic regression models
    Dette, H
    Haines, LM
    Imhof, LA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (02): : 221 - 241
  • [25] Optimal designs for rational models and weighted polynomial regression
    Dette, H
    Haines, LM
    Imhof, L
    [J]. ANNALS OF STATISTICS, 1999, 27 (04): : 1272 - 1293
  • [26] Optimal Designs for Regression Models with a Constant Coefficient of Variation
    Dette H.
    Müller W.G.
    [J]. Journal of Statistical Theory and Practice, 2013, 7 (4) : 658 - 673
  • [27] OPTIMAL DESIGNS FOR REGRESSION-MODELS WITH POSSIBLE BIAS
    NOTZ, WI
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1989, 22 (01) : 43 - 54
  • [28] R-optimal designs for trigonometric regression models
    Lei He
    Rong-Xian Yue
    [J]. Statistical Papers, 2020, 61 : 1997 - 2013
  • [29] On optimal designs for high dimensional binary regression models
    Torsney, B
    Gunduz, N
    [J]. OPTIMUM DESIGN 2000, 2001, 51 : 275 - 285
  • [30] Optimal designs for comparing regression models with correlated observations
    Dette, Holger
    Schorning, Kirsten
    Konstantinou, Maria
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 113 : 273 - 286