Ultra-sensitive direct detection of silver ions via Kelvin probe force microscopy

被引:33
|
作者
Park, Jinsung [1 ]
Lee, Sangmyung [2 ]
Jang, Kuewhan [2 ]
Na, Sungsoo [2 ]
机构
[1] Korea Univ, Dept Control & Instrumentat Engn, Jochiwon 339700, South Korea
[2] Korea Univ, Dept Mech Engn, Seoul 136701, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Silver ion; DNA-metal interaction; Kelvin probe force microscope; Surface potential; Single droplet; LABEL-FREE; SENSOR; NANOSCALE; CYSTEINE;
D O I
10.1016/j.bios.2014.04.038
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Nanotoxicity is receiving great importance due to its potential impact on human health and environment and due to rapid development in the field of nanoscale research and industry. Herein, we report the Kelvin probe force microscope (KPPM)-based nanotoxicity material detection using surface potential difference. In general, it is difficult to measure the size of ion (Ag+) using a conventional atomic force microscope (AFM) because of the limited resolution. In this study, we have demonstrated that KPFM is capable of ultra-sensitive detection of silver ion with silver specific DNA by a single droplet. Furthermore, the measured surface potentials for Ag+ and DNA binding enable the detection performance for a practical sample that is general drinking water. Remarkably, the KPFM based silver ion detection enables an insight into the coordination chemistry, which plays an important role in early detection of toxicity. This implies that KPFM based detection system opens a new avenue for water testing sensor. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:299 / 304
页数:6
相关论文
共 50 条
  • [41] Improved approach for ultra-sensitive detection of NO
    Qian, Yixian
    Sun, Huijuan
    OPTICS EXPRESS, 2011, 19 (02): : 739 - 747
  • [42] The influence of surface topography on Kelvin probe force microscopy
    Sadewasser, S.
    Leendertz, C.
    Streicher, F.
    Lux-Steiner, M. Ch
    NANOTECHNOLOGY, 2009, 20 (50)
  • [43] Dual-heterodyne Kelvin probe force microscopy
    Grévin B.
    Husainy F.
    Aldakov D.
    Aumaître C.
    Beilstein Journal of Nanotechnology, 2023, 14 : 1068 - 1084
  • [44] Ultra-sensitive detection of leukemia by graphene
    Akhavan, Omid
    Ghaderi, Elham
    Hashemi, Ehsan
    Rahighi, Reza
    NANOSCALE, 2014, 6 (24) : 14810 - 14819
  • [45] The effect of sample resistivity on Kelvin probe force microscopy
    Weymouth, A. J.
    Giessibl, F. J.
    APPLIED PHYSICS LETTERS, 2012, 101 (21)
  • [46] Kelvin probe force microscopy for perovskite solar cells
    Kang, Zhuo
    Si, Haonan
    Shi, Mingyue
    Xu, Chenzhe
    Fan, Wenqiang
    Ma, Shuangfei
    Kausar, Ammarah
    Liao, Qingliang
    Zhang, Zheng
    Zhang, Yue
    SCIENCE CHINA-MATERIALS, 2019, 62 (06) : 776 - 789
  • [47] Three-Dimensional Kelvin Probe Force Microscopy
    Geng, Junyuan
    Zhang, Hao
    Meng, Xianghe
    Gao, Haibo
    Rong, Weibin
    Xie, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (28) : 32719 - 32728
  • [48] Ultra-sensitive detection and manipulation of biomolecules
    Berlin, AA
    Su, X
    LAB - ON - A - CHIP: PLATFORMS, DEVICES, AND APPLICATIONS, 2004, 5591 : 33 - 43
  • [49] Atomic and Kelvin probe force microscopy of thin films
    Alessandrini, A
    Valdrè, U
    PROCEEDINGS OF THE 5TH MULTINATIONAL CONGRESS ON ELECTRON MICROSCOPY, 2001, : 553 - 554
  • [50] Ultra-sensitive DNA detection on microarrays
    Jacak, J
    Hesse, J
    Hesch, C
    Kasper, M
    Aberger, F
    Frischauf, A
    Sonnleitner, M
    Freudenthaler, G
    Howorka, S
    Schütz, GJ
    Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III, 2005, 5699 : 442 - 449