Detailed exergetic evaluation of heavy-duty gas turbine systems running on natural gas and syngas

被引:20
|
作者
Sorgenfrei, Max [1 ]
Tsatsaronis, George [1 ]
机构
[1] Tech Univ Berlin, Inst Energy Engn, Berlin, Germany
关键词
Gas turbine; Exergy analysis; Inefficiencies; Syngas; IGCC; OPTIMIZATION;
D O I
10.1016/j.enconman.2015.03.111
中图分类号
O414.1 [热力学];
学科分类号
摘要
Gas turbine systems are widely used for the production of electricity in a simple or combined-cycle mode today. Based on their ability to allow a fast load change, gas turbine systems will become even more important in the future since the volatile production of renewable energies will increase. In this study, a state-of-the-art gas turbine running on natural gas, having an overall net efficiency of approximately 40%, is modeled using Aspen Plus (R) and characteristic parameters are identified. Based on these parameters, a gas turbine running on syngas was simulated. The emphasis here is on a very detailed evaluation of the inefficiencies. The models consider cooling and sealing flows. The syngas considered in this study is typically used in IGCC processes with carbon capture resulting in a high concentration of hydrogen. For both systems, twelve types of inefficiencies were identified and rated. A comparison of the inefficiencies within each system and between both systems represented by their exergy destruction ratios is presented. In case of the gas turbine running on natural gas, the most important results show that the stoichiometric combustion, followed by the addition of excess air represent the largest inefficiencies. When just applying an isentropic efficiency, the exergy destructions associated with expansion and mixing at different temperatures and pressures of a gas turbine stage cannot be further sub-divided. Hence, this grouping of inefficiencies results to the third position. The effect of mixing at different compositions and the compression follows. In the second case considered here (use of syngas instead of natural gas), the effects of mixing and adding excess air become more significant due to a higher specific heat capacity of the combustion gas. In both cases, the exergy destruction associated with mixing at different compositions can be neglected except the one at the inlet of the pre-mixed combustor, which strongly depends on the particular conditions of the fuel gas. Inefficiencies such as convective cooling of the vanes and blades, heat loss, losses associated with the shaft and generator were found to represent a very small part of the overall exergy destruction. The resulting exergy destructions and losses are shown in an exergy flow diagram. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 50 条
  • [41] AERODYNAMIC ANALYSIS AND REDESIGN OF AN INLET SEGMENT FOR A HEAVY-DUTY GAS TURBINE ENGINE
    Abdel-Wahab, Samer
    Vogel, Gregory
    PROCEEDINGS OF THE ASME TURBO EXPO 2010: TURBOMACHINERY: AXIAL FLOW FAN AND COMPRESSOR AERODYNAMICS DESIGN METHODS, AND CFD MODELING FOR TURBOMACHINERY, VOL 7, PTS A-C, 2010, : 1275 - 1282
  • [42] Impact of the Inflow Conditions on the Heavy-Duty Gas Turbine Exhaust Diffuser Performance
    Vassiliev, Vladimir
    Irmisch, Stefan
    Abdel-Wahab, Samer
    Granovskiy, Andrey
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2012, 134 (04):
  • [43] Gas Turbine Fouling: A comparison Among One Hundred Heavy-Duty Frames
    Aldi, Nicola
    Casari, Nicola
    Morini, Mirko
    Pinelli, Michele
    Spina, Pier Ruggero
    Suman, Alessio
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 9, 2018,
  • [44] Model development and field testing of a heavy-duty gas-turbine generator
    Pourbeik, Pouyan
    Modau, Fhedzisani
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (02) : 664 - 672
  • [45] Upgrade of the Intake Air Cooling System for a Heavy-Duty Industrial Gas Turbine
    Ingistov, Steve
    Chaker, Mustapha
    PROCEEDINGS OF THE ASME TURBO EXPO 2011, VOL 4, 2012, : 579 - 590
  • [46] Thermal adaptive alignment mechanism of heavy-duty gas turbine bearing support
    Xu, Guohui
    Geng, Haipeng
    Lu, Mingjian
    Cheng, Wenjie
    Yang, Lihua
    Yu, Lie
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2014, 50 (24): : 164 - 170
  • [47] Investigations on combustion system optimization of a heavy-duty natural gas engine
    Li, Wei
    Ma, Junfang
    Liu, Hongzhe
    Wang, Hui
    Zhang, Hairui
    Qi, Tonghui
    Wu, Dongyin
    Pan, Jiaying
    FUEL, 2023, 331
  • [48] IMPACT OF THE INFLOW CONDITIONS ON THE HEAVY-DUTY GAS TURBINE EXHAUST DIFFUSERS PERFORMANCE
    Vassiliev, Vladimir
    Irmisch, Stefan
    Abdel-Wahab, Samer
    Granovskiy, Andrey
    PROCEEDINGS OF THE ASME TURBO EXPO 2010: TURBOMACHINERY: AXIAL FLOW FAN AND COMPRESSOR AERODYNAMICS DESIGN METHODS, AND CFD MODELING FOR TURBOMACHINERY, VOL 7, PTS A-C, 2010, : 1401 - 1412
  • [49] PERFORMANCE TEST OF DLN COMBUSTOR FOR 110 MW HEAVY-DUTY GAS TURBINE
    Qi, Haiying
    Xie, Gang
    Li, Yuhong
    Feng, Chong
    Chen, Xiaoli
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON POWER ENGINEERING 2009 (ICOPE-09), VOL 1, 2009, : 59 - 64
  • [50] Probabilistic failure analysis of hot gas path in a heavy-duty gas turbine using Bayesian networks
    Amir Masoud Mirhosseini
    S. Adib Nazari
    A. Maghsoud Pour
    S. Etemadi Haghighi
    M. Zareh
    International Journal of System Assurance Engineering and Management, 2019, 10 : 1173 - 1185