Orthogonal matrix polynomials

被引:0
|
作者
Durán, AJ [1 ]
López-Rodríguez, P [1 ]
机构
[1] Univ Seville, Dept Anal Matemat, E-41080 Seville, Spain
关键词
matrix orthogonal polynomials; zeros; quadrature formula; Markov's theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:13 / 44
页数:32
相关论文
共 50 条
  • [21] Orthogonal matrix polynomials and quadrature formulas
    Duran, Antonio J.
    Defez, Emilio
    Linear Algebra and Its Applications, 2002, 345 (1-3) : 71 - 84
  • [22] Ratio asymptotics for orthogonal matrix polynomials
    Duran, AJ
    JOURNAL OF APPROXIMATION THEORY, 1999, 100 (02) : 304 - 344
  • [23] Differential coefficients of orthogonal matrix polynomials
    Duran, AJ
    Ismail, MEH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 190 (1-2) : 424 - 436
  • [24] Weak convergence for orthogonal matrix polynomials
    Duran, AJ
    Daneri, E
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2002, 13 (01): : 47 - 62
  • [25] Perturbations in the Nevai matrix class of orthogonal matrix polynomials
    Yakhlef, HO
    Marcellán, F
    Piñar, MA
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 336 (1-3) : 231 - 254
  • [26] Classical Orthogonal Matrix Polynomials and Bessel Matrix Functions
    Cekim, Bayram
    ProQuest Dissertations and Theses Global, 2011,
  • [27] A connection between orthogonal polynomials on the unit circle and matrix orthogonal polynomials on the real line
    Cantero, MJ
    Ferrer, MP
    Moral, L
    Velázquez, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (02) : 247 - 272
  • [28] OPERATOR OF GENERALIZED SHIFT IN ORTHOGONAL MATRIX POLYNOMIALS
    OSILENKER, BP
    DOKLADY AKADEMII NAUK SSSR, 1991, 318 (02): : 282 - 284
  • [29] MATRIX ORTHOGONAL POLYNOMIALS: A RIEMANN–HILBERT APPROACH
    Branquinho, Amílcar
    Foulquie-Moreno
    Fradi, Assil
    Mañas, Manuel
    arXiv, 2023,
  • [30] A canonical Geronimus transformation for matrix orthogonal polynomials
    Carlos Garcia-Ardila, Juan
    Garza, Luis E.
    Marcellan, Francisco
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02): : 357 - 381