Analysis of numerical integration accuracy of singular integrals in moment method of TDEFIE

被引:0
|
作者
Zhao Yan-Wen [1 ]
Zhao Qing-Guang [1 ]
Luo Xi [1 ]
Nie Zai-Ping [1 ]
Bi Hai-Yan [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu 610054, Peoples R China
基金
美国国家科学基金会;
关键词
time-domain electric field integral equations; marching-on-in-time (MOT); singular integrals;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The area coordinates, relative coordinates, domain decomposition and general Duffy coordinate transformations are employed to transform the singular integrals (the supports of the basis and test functions have common facet, common edge or common one vertex) of the time-domain electric field integral equation (TDEFIE) into non-singular integrals, which allows to be accurately evaluated. With different temporal basis function (continuous and non-continuous derivative) and different time step size, the comparisons of the accuracy of the proposed method and traditional numerical integral methods are also presented.
引用
收藏
页码:386 / +
页数:3
相关论文
共 50 条
  • [41] Numerical Integration Formulas for Hypersingular Integrals
    Shadimetov, Kholmat M.
    Akhmedov, Dilshod M.
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2024, 17 (03): : 805 - 826
  • [42] Numerical evaluation of nearly hyper-singular integrals in the boundary element analysis
    Gu, Yan
    Hua, Qingsong
    Chen, Wen
    Zhang, Chuanzeng
    COMPUTERS & STRUCTURES, 2016, 167 : 15 - 23
  • [43] A Fully Numerical Method Based on Double Exponential Formulas for Strongly Singular Volume Integrals
    Selcuk, Gokhun
    Demir, Oguz
    Ozturk, C. Duygu
    2016 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2016, : 29 - 30
  • [44] A NUMERICAL-METHOD FOR THE APPROXIMATION OF SINGULAR-INTEGRALS OF FUNCTIONS WITH A POLE OF ORDER 2
    JADIC, I
    APPLIED NUMERICAL MATHEMATICS, 1994, 15 (04) : 395 - 406
  • [45] ON THE ACCURACY OF THE NUMERICAL INTEGRALS OF THE NEWMARK'S METHOD FOR COMPUTING INELASTIC SEISMIC RESPONSES
    Yoshizaki, Nobuteru
    Ijima, Katsushi
    Obiya, Hiroyuki
    Zakaria, Nizam M.
    XV INTERNATIONAL CONFERENCE ON COMPUTATIONAL PLASTICITY: FUNDAMENTALS AND APPLICATIONS (COMPLAS 2019), 2019, : 314 - 321
  • [46] A NOTE ON THE NUMERICAL-INTEGRATION METHOD FOR SOLVING SINGULAR PERTURBATION PROBLEMS
    REDDY, YN
    APPLIED MATHEMATICS AND COMPUTATION, 1991, 43 (02) : 175 - 180
  • [47] ALGORITHM FOR EVALUATION OF 2-ELECTRON INTEGRALS BY NUMERICAL-INTEGRATION METHOD
    CHANG, SY
    JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 20 (02) : 243 - 247
  • [48] Numerical evaluation for Cauchy type singular integrals on the interval
    Eshkuvatov, Z. K.
    Long, N. M. A. Nik
    Abdulkawi, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1995 - 2001
  • [49] Numerical treatment of singular integrals in boundary element calculations
    Huber, C.J.
    Rieger, W.
    Haas, M.
    Rucker, W.M.
    Applied Computational Electromagnetics Society Journal, 1997, 12 (02): : 121 - 126
  • [50] On the numerical evaluation of singular integrals with coth-kernel
    Univ of Zimbabwe, Harare, Zimbabwe
    Int J Comput Math, 3 /4 (261-271):