Lipschitzian regularity of minimizers for optimal control problems with control-affine dynamics

被引:28
|
作者
Sarychev, AV [1 ]
Torres, DFM [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810 Aveiro, Portugal
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2000年 / 41卷 / 02期
关键词
optimal control; Calculus of Variations; Pontryagin Maximum Principle; boundedness of minimizers; nonlinear control-affine systems; Lipschitzian regularity;
D O I
10.1007/s002459911013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Lagrange Problem of Optimal Control with a functional integral(a)(b) L (t, x (t), u (t)) dt and control-affine dynamics (x) over dot = f (t, x) + g (t, x)u and (a priori) unconstrained control u is an element of R-m. We obtain conditions under which the minimizing controls of the problem are bounded-a fact which is crucial for the applicability of many necessary optimality conditions, like, for example, the Pontryagin Maximum Principle. As a corollary we obtain conditions for the Lipschitzian regularity of minimizers of the Basic Problem of the Calculus of Variations and of the Problem of the Calculus of Variations with higher-order derivatives.
引用
收藏
页码:237 / 254
页数:18
相关论文
共 50 条
  • [21] A New Approach for Solving the Optimal Control Problem of Nonlinear Systems in Control-affine Form
    Jajarmi, Amin
    Pariz, Naser
    Kamyad, Ali Vahidian
    Effati, Sohrab
    [J]. 2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL II, 2010, : 73 - 76
  • [22] Bilinearization, Reachability, and Optimal Control of Control-Affine Nonlinear Systems: A Koopman Spectral Approach
    Goswami, Debdipta
    Paley, Derek A.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) : 2715 - 2728
  • [24] Optimal control using an algebraic method for control-affine non-linear systems
    Won, C.-H.
    Biswas, S.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2007, 80 (09) : 1491 - 1502
  • [25] COMPLEXITY OF CONTROL-AFFINE MOTION PLANNING
    Jean, F.
    Prandi, D.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (02) : 816 - 844
  • [26] Second order analysis of control-affine problems with scalar state constraint
    Aronna, M. S.
    Bonnans, J. F.
    Goh, B. S.
    [J]. MATHEMATICAL PROGRAMMING, 2016, 160 (1-2) : 115 - 147
  • [27] Singular trajectories of control-affine systems
    Chitour, Yacine
    Jean, Frederic
    Trelat, Emmanuel
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (02) : 1078 - 1095
  • [28] On the strong local optimality for state-constrained control-affine problems
    F. C. Chittaro
    L. Poggiolini
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2023, 30
  • [29] Consensus of Multi-agent Systems with Control-affine Nonlinear Dynamics
    Hu, Haiyun
    Yoon, Se Young
    Lin, Zongli
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 3734 - 3739
  • [30] Metric sub-regularity in optimal control of affine problems with free end state
    Osmolovskii, N. P.
    Veliov, V. M.
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26