Multiple Kernel Learning in the Primal for Multimodal Alzheimer's Disease Classification

被引:90
|
作者
Liu, Fayao [1 ,2 ]
Zhou, Luping [3 ]
Shen, Chunhua [1 ,2 ]
Yin, Jianping [4 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Australian Ctr Visual Technol, Adelaide, SA 5005, Australia
[3] Univ Wollongong, Dept Comp Sci & Software Engn, Wollongong, NSW 2522, Australia
[4] Natl Univ Def Technol, Coll Comp, Changsha 410073, Hunan, Peoples R China
关键词
Alzheimer's disease (AD); group Lasso; multimodal features; multiple kernel learning (MKL); random Fourier feature (RFF); CSF BIOMARKERS; ATROPHY; PREDICTION; DIAGNOSIS;
D O I
10.1109/JBHI.2013.2285378
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To achieve effective and efficient detection of Alzheimer's disease (AD), many machine learning methods have been introduced into this realm. However, the general case of limited training samples, as well as different feature representations typically makes this problem challenging. In this paper, we propose a novel multiple kernel-learning framework to combine multimodal features for AD classification, which is scalable and easy to implement. Contrary to the usual way of solving the problem in the dual, we look at the optimization from a new perspective. By conducting Fourier transform on the Gaussian kernel, we explicitly compute the mapping function, which leads to a more straightforward solution of the problem in the primal. Furthermore, we impose the mixed L-21 norm constraint on the kernel weights, known as the group lasso regularization, to enforce group sparsity among different feature modalities. This actually acts as a role of feature modality selection, while at the same time exploiting complementary information among different kernels. Therefore, it is able to extract the most discriminative features for classification. Experiments on the ADNI dataset demonstrate the effectiveness of the proposed method.
引用
收藏
页码:984 / 990
页数:7
相关论文
共 50 条
  • [21] Advancements in Alzheimer's disease classification using deep learning frameworks for multimodal neuroimaging: A comprehensive review
    Upadhyay, Prashant
    Tomar, Pradeep
    Yadav, Satya Prakash
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120
  • [22] Multimodal Alzheimer Diagnosis Using Instance-Based Data Representation and Multiple Kernel Learning
    Collazos-Huertas, Diego
    Cardenas-Pena, David
    Castellanos-Dominguez, German
    PROGRESS IN ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION, IWAIPR 2018, 2018, 11047 : 201 - 209
  • [23] Multimodal deep learning for Alzheimer's disease dementia assessment
    Qiu, Shangran
    Miller, Matthew, I
    Joshi, Prajakta S.
    Lee, Joyce C.
    Xue, Chonghua
    Ni, Yunruo
    Wang, Yuwei
    De Anda-Duran, Ileana
    Hwang, Phillip H.
    Cramer, Justin A.
    Dwyer, Brigid C.
    Hao, Honglin
    Kaku, Michelle C.
    Kedar, Sachin
    Lee, Peter H.
    Mian, Asim Z.
    Murman, Daniel L.
    O'Shea, Sarah
    Paul, Aaron B.
    Saint-Hilaire, Marie-Helene
    Sartor, E. Alton
    Saxena, Aneeta R.
    Shih, Ludy C.
    Small, Juan E.
    Smith, Maximilian J.
    Swaminathan, Arun
    Takahashi, Courtney E.
    Taraschenko, Olga
    You, Hui
    Yuan, Jing
    Zhou, Yan
    Zhu, Shuhan
    Alosco, Michael L.
    Mez, Jesse
    Stein, Thor D.
    Poston, Kathleen L.
    Au, Rhoda
    Kolachalama, Vijaya B.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [24] Multimodal deep learning for Alzheimer’s disease dementia assessment
    Shangran Qiu
    Matthew I. Miller
    Prajakta S. Joshi
    Joyce C. Lee
    Chonghua Xue
    Yunruo Ni
    Yuwei Wang
    Ileana De Anda-Duran
    Phillip H. Hwang
    Justin A. Cramer
    Brigid C. Dwyer
    Honglin Hao
    Michelle C. Kaku
    Sachin Kedar
    Peter H. Lee
    Asim Z. Mian
    Daniel L. Murman
    Sarah O’Shea
    Aaron B. Paul
    Marie-Helene Saint-Hilaire
    E. Alton Sartor
    Aneeta R. Saxena
    Ludy C. Shih
    Juan E. Small
    Maximilian J. Smith
    Arun Swaminathan
    Courtney E. Takahashi
    Olga Taraschenko
    Hui You
    Jing Yuan
    Yan Zhou
    Shuhan Zhu
    Michael L. Alosco
    Jesse Mez
    Thor D. Stein
    Kathleen L. Poston
    Rhoda Au
    Vijaya B. Kolachalama
    Nature Communications, 13
  • [25] Deep ensemble learning for Alzheimer's disease classification
    An, Ning
    Ding, Huitong
    Yang, Jiaoyun
    Au, Rhoda
    Ang, Ting F. A.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 105
  • [26] Deep structural learning for classification of Alzheimer's disease
    Oishi, N.
    Fukuyama, H.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2017, 381 : 811 - 811
  • [27] Hierarchical Ensemble Learning for Alzheimer's Disease Classification
    Wang, Ruyue
    Li, Hanhui
    Lan, Rushi
    Luo, Suhuai
    Luo, Xiaonan
    2018 7TH INTERNATIONAL CONFERENCE ON DIGITAL HOME (ICDH 2018), 2018, : 224 - 229
  • [28] Multiple Kernel Learning Based Classification of Parkinson's Disease With Multi-Modal Transcranial Sonography
    Shi, Jun
    Yan, Minjun
    Dong, Yun
    Zheng, Xiao
    Zhang, Qi
    An, Hedi
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 61 - 64
  • [29] Deep Learning Based Multimodal Progression Modeling for Alzheimer's Disease
    Yang, Liuqing
    Wang, Xifeng
    Guo, Qi
    Gladstein, Scott
    Wooten, Dustin
    Li, Tengfei
    Robieson, Weining Z.
    Sun, Yan
    Huang, Xin
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2021, 13 (03): : 337 - 343
  • [30] A Multimodal Deep Learning Based Approach for Alzheimer's Disease Diagnosis
    De Simone, Adriano
    Sansone, Carlo
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT II, 2024, 14366 : 131 - 139