Automotive EMC Analysis Using the Hybrid Finite Element Boundary Integral Approach

被引:0
|
作者
Mologni, J. F. [1 ]
Kopp, M. [1 ]
Siqueira, C. L. R. [1 ]
Colin, A. [2 ]
Nogueira, A. [2 ]
Alves, M. A. R. [3 ]
机构
[1] ESSS ANSYS, Elect Design Automat Dept, 423 Rocio St,Off 1001, Sao Paulo, Brazil
[2] FIAT, Electromagnet Compatibil Dept, Betim, Brazil
[3] Univ Estadual Campinas, Elect & Microelectron Dept, Campinas, Brazil
关键词
DOMAIN DECOMPOSITION METHOD; ELECTROMAGNETIC PROBLEMS; SCATTERING; RADIATION; ALGORITHM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The majority of innovative trends in automotive industry today relies on electronic systems. Understanding the electromagnetic behavior of the electronic control units (ECUs) in a vehicle has become an ever increasing concern of automotive manufacturers. Computational Electromagnetic Modeling (CEM) is a cost effective approach that has being adopted by the automotive industry to address electromagnetic compatibility (EMC) problems. Automotive structures are electrically large in nature and the systems required for a complete EMC analysis can be fairly complex. For this reason, there is no single numerical technique that can be used to address all automotive EMC problems. This paper shows how the automotive standard ISO11452-2 can be solved using the hybrid Finite Element Boundary Integral (FEBI) approach. A comparative study indicates that FEBI is faster and requires less computational effort than the Finite Element Method (FEM) for this particular analysis. Recent technology advances on FEBI are also presented showing the great potential of this technique to address automotive EMC problems.
引用
下载
收藏
页码:688 / 693
页数:6
相关论文
共 50 条