Predicting Hit Music using MIDI features and Machine Learning

被引:0
|
作者
Rajyashree, R. [1 ]
Anand, Anmol [1 ]
Soni, Yash [1 ]
Mahajan, Harshitaa [1 ]
机构
[1] SRM Inst Sci & Technol, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
MIDI; !text type='jS']jS[!/text]ymbolic; Million Song Database; Musical Information Retrieval; Naive Bayes; Random Forest; Feedforward Propagation; Back Propagation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper intends to analyze metadata and audio analysis features from a random sample of one million popular tracks, available in the Million Song Dataset (MSD), and assess their potential of making it into the Billboard hot 100 song list. Through the use of various machine learning different models, we can determine the interaction and importance of different variables over time and their effects on the success on the Billboard charts. With such knowledge, we can access and identify the past music trends and help producers with the steps to create the perfect commercially successful song.
引用
收藏
页码:94 / 98
页数:5
相关论文
共 50 条
  • [21] Predicting protein-RNA interaction using sequence derived features and machine learning approach
    Pandey, Chandan
    Sandeep, Rokkam
    Priyam, Aikansh
    Mahapatra, Satyajit
    Sahu, Sitanshu Sekhar
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2018, 19 (03) : 270 - 282
  • [22] Predicting dynamic stability from static features in power grid models using machine learning
    Titz, Maurizio
    Kaiser, Franz
    Kruse, Johannes
    Witthaut, Dirk
    [J]. CHAOS, 2024, 34 (01)
  • [23] Predicting Packaging Sizes Using Machine Learning
    Heininger M.
    Ortner R.
    [J]. Operations Research Forum, 3 (3)
  • [24] Using machine learning for predicting outcomes in ACLF
    Tonon, Marta
    Moreau, Richard
    [J]. LIVER INTERNATIONAL, 2022, 42 (11) : 2354 - 2355
  • [25] Predicting Enthalpy of Combustion Using Machine Learning
    Jameel, Abdul Gani Abdul
    Al-Muslem, Ali
    Ahmad, Nabeel
    Alquaity, Awad B. S.
    Zahid, Umer
    Ahmed, Usama
    [J]. PROCESSES, 2022, 10 (11)
  • [26] Predicting glycosylation stereoselectivity using machine learning
    Moon, Sooyeon
    Chatterjee, Sourav
    Seeberger, Peter H.
    Gilmore, Kerry
    [J]. CHEMICAL SCIENCE, 2021, 12 (08) : 2931 - 2939
  • [27] Predicting Happiness Index Using Machine Learning
    Akanbi, Kemi
    Jones, Yeboah
    Oluwadare, Sunkanmi
    Nti, Isaac Kofi
    [J]. 2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [28] Predicting Atlantic Hurricanes Using Machine Learning
    Velasco Herrera, Victor Manuel
    Martell-Dubois, Raul
    Soon, Willie
    Velasco Herrera, Graciela
    Cerdeira-Estrada, Sergio
    Zuniga, Emmanuel
    Rosique-de la Cruz, Laura
    [J]. ATMOSPHERE, 2022, 13 (05)
  • [29] Predicting the Geoeffectiveness of CMEs Using Machine Learning
    Pricopi, Andreea-Clara
    Paraschiv, Alin Razvan
    Besliu-Ionescu, Diana
    Marginean, Anca-Nicoleta
    [J]. ASTROPHYSICAL JOURNAL, 2022, 934 (02):
  • [30] Predicting ASD Using Optimized Machine Learning
    Almana, Shaikhah
    Hammad, Mustafa
    [J]. 2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1598 - 1602