Deep Learning Algorithm with Visual Impression

被引:0
|
作者
He, Funan [1 ]
Yang, Mengduo [1 ]
Li, Fanzhang [2 ]
机构
[1] Suzhou Vocat Inst Ind Technol, Sch Software & Serv Outsourcing, Suzhou, Peoples R China
[2] Soochow Univ, Sch Comp Sci & Technol, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
visual impression; deep learning; recognition model; generalization model;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we develop two visual impression models: recognition model and generalization model to simulate the cognition process of human visual systems. We show how the visual impression learned with a deep neural network can be efficiently transferred to other visual recognition tasks. By reusing the hidden layers trained in an unsupervised way, we show that we can largely reduce the number of annotated image samples in the target tasks. Experiments show that parameters estimated in the source task can indeed help the network to improve results for object classification in the target tasks.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Deep Learning for Visual Content Analysis
    Iosifidis, Alexandros
    Tefas, Anastasios
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 83
  • [42] Deep learning for visual understanding: A review
    Guo, Yanming
    Liu, Yu
    Oerlemans, Ard
    Lao, Songyang
    Wu, Song
    Lew, Michael S.
    NEUROCOMPUTING, 2016, 187 : 27 - 48
  • [43] Deep Learning for Visual Segmentation: A Review
    Sun, Jiaxing
    Li, Yujie
    Lu, Huimin
    Kamiya, Tohru
    Serikawa, Seiichi
    2020 IEEE 44TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2020), 2020, : 1256 - 1260
  • [44] Active Learning for Deep Visual Tracking
    Yuan, Di
    Chang, Xiaojun
    Liu, Qiao
    Yang, Yi
    Wang, Dehua
    Shu, Minglei
    He, Zhenyu
    Shi, Guangming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (10) : 1 - 13
  • [45] Enhancing Deep Learning with Visual Interactions
    Krokos, Eric
    Cheng, Hsueh-Chen
    Chang, Jessica
    Nebesh, Bohdan
    Paul, Celeste Lyn
    Whitley, Kirsten
    Varshney, Amitabh
    ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2019, 9 (01)
  • [46] Deep unsupervised learning of visual similarities
    Sanakoyeu, Artsiom
    Bautista, Miguel A.
    Ommer, Bjoern
    PATTERN RECOGNITION, 2018, 78 : 331 - 343
  • [47] Visual interpretability for deep learning: a survey
    Quan-shi Zhang
    Song-chun Zhu
    Frontiers of Information Technology & Electronic Engineering, 2018, 19 : 27 - 39
  • [48] Deep Learning in Visual Tracking: A Review
    Jiao, Licheng
    Wang, Dan
    Bai, Yidong
    Chen, Puhua
    Liu, Fang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) : 5497 - 5516
  • [49] Visual interpretability for deep learning: a survey
    Zhang, Quan-shi
    Zhu, Song-chun
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2018, 19 (01) : 27 - 39
  • [50] A Review of Visual Tracking with Deep Learning
    Feng, Xiaoyu
    Mei, Wei
    Hu, Dashuai
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2016), 2016, 133 : 231 - 234