Deep Learning Algorithm with Visual Impression

被引:0
|
作者
He, Funan [1 ]
Yang, Mengduo [1 ]
Li, Fanzhang [2 ]
机构
[1] Suzhou Vocat Inst Ind Technol, Sch Software & Serv Outsourcing, Suzhou, Peoples R China
[2] Soochow Univ, Sch Comp Sci & Technol, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
visual impression; deep learning; recognition model; generalization model;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we develop two visual impression models: recognition model and generalization model to simulate the cognition process of human visual systems. We show how the visual impression learned with a deep neural network can be efficiently transferred to other visual recognition tasks. By reusing the hidden layers trained in an unsupervised way, we show that we can largely reduce the number of annotated image samples in the target tasks. Experiments show that parameters estimated in the source task can indeed help the network to improve results for object classification in the target tasks.
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [1] Deep learning algorithm with visual impression
    Yang, Mengduo
    Li, Fanzhang
    Zhang, Li
    Zhang, Zhao
    INFORMATION PROCESSING LETTERS, 2018, 136 : 1 - 4
  • [2] Topological Deep Learning Algorithm with Visual Impression
    Yang, Mengduo
    Li, Fanzhang
    2017 INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2017,
  • [3] Visual Odometry Algorithm Based on Deep Learning
    Zhang Zaiteng
    Zhang Rongfen
    Liu Yuhong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (04)
  • [4] Deep learning algorithm for visual quality assessment of the spirograms
    Walag, Damian
    Solinski, Mateusz
    Koltowski, Lukasz
    Gorska, Katarzyna
    Korczynski, Piotr
    Kuznar-Kaminska, Barbara
    Grabicki, Marcin
    Basza, Mikolaj
    Lepek, Michal
    PHYSIOLOGICAL MEASUREMENT, 2023, 44 (08)
  • [5] Lie Group Impression For Deep Learning
    Yang, Mengduo
    Li, Fanzhang
    2017 INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2017,
  • [6] Lie group impression for deep learning
    Yang, Mengduo
    Li, Fanzhang
    Zhang, Li
    Zhang, Zhao
    INFORMATION PROCESSING LETTERS, 2018, 136 : 12 - 16
  • [7] Visual Interpretable Deep Learning Algorithm for Geochemical Anomaly Recognition
    Zijing Luo
    Renguang Zuo
    Yihui Xiong
    Natural Resources Research, 2022, 31 : 2211 - 2223
  • [8] APPLICATION OF DEEP LEARNING ALGORITHM IN VISUAL OPTIMIZATION OF INDUSTRIAL DESIGN
    Zhang C.
    Scalable Computing, 2024, 25 (04): : 2175 - 2182
  • [9] Visual SLAM algorithm in dynamic environment based on deep learning
    Yu, Yingjie
    Chen, Shuai
    Yang, Xinpeng
    Xu, Changzhen
    Zhang, Sen
    Xiao, Wendong
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2024,
  • [10] Visual Interpretable Deep Learning Algorithm for Geochemical Anomaly Recognition
    Luo, Zijing
    Zuo, Renguang
    Xiong, Yihui
    NATURAL RESOURCES RESEARCH, 2022, 31 (05) : 2211 - 2223