Decomposition of Nonconvex Optimization via Bi-Level Distributed ALADIN

被引:18
|
作者
Engelmann, Alexander [1 ]
Jiang, Yuning [2 ]
Houska, Boris [2 ]
Faulwasser, Timm [1 ,3 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, D-76131 Karlsruhe, Germany
[2] Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[3] TU Dortmund Univ, Dept Elect Engn & Informat Technol, D-44227 Dortmund, Germany
来源
基金
欧盟地平线“2020”;
关键词
Alternating direction of multipliers method (ADMM); augmented Lagrangian alternating direction inexact Newton (ALADIN); conjugate gradient (CG); decentralized optimization; decomposition; distributed model predictive control; distributed optimal power flow; distributed optimization; ALTERNATING DIRECTION METHOD; SUPERLINEAR CONVERGENCE; LINEAR CONVERGENCE; ALGORITHM; CONSENSUS; MULTIPLIERS; ADMM;
D O I
10.1109/TCNS.2020.3005079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decentralized optimization algorithms are of interest in different contexts, e.g., optimal power flow or distributed model predictive control, as they avoid central coordination and enable decomposition of large-scale problems. In case of constrained nonconvex problems, only a few algorithms are currently available-often with limited performance or lacking convergence guarantee. This article proposes a framework for decentralized nonconvex optimization via bi-level distribution of the augmented Lagrangian alternating direction inexact Newton (ALADIN) algorithm. Bi-level distribution means that the outer ALADIN structure is combined with an inner distribution/decentralization level solving a condensed variant of ALADIN's convex coordination quadratic program (QP) by decentralized algorithms. We provide sufficient conditions for local convergence while allowing for inexact decentralized/distributed solutions of the coordination QP. Moreover, we show how decentralized variants of conjugate gradient and alternating direction of multipliers method (ADMM) can be employed at the inner level. We draw upon examples from power systems and robotics to illustrate the performance of the proposed framework.
引用
收藏
页码:1848 / 1858
页数:11
相关论文
共 50 条
  • [21] Bi-Level Distributed Optimization for Microgrid Clusters Based on Alternating Direction Method of Multipliers
    Wang H.
    Ai Q.
    Wu J.
    Xie Y.
    Zhou X.
    [J]. Ai, Qian (aiqian@sjtu.edu.cn), 1718, Power System Technology Press (42): : 1718 - 1725
  • [22] Hierarchical game and Bi-level optimization for controlling network usage via pricing
    Hayel, Yezekael
    [J]. NETWORK CONTROL AND OPTIMIZATION, PROCEEDINGS, 2007, 4465 : 257 - 265
  • [23] Decentralized non-convex optimization via bi-level SQP and ADMM
    Stomberg, Goesta
    Engelmann, Alexander
    Faulwasser, Timm
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 273 - 278
  • [24] A bi-level optimization model for technology selection
    Aviso, Kathleen B.
    Chiu, Anthony S. F.
    Ubando, Aristotle T.
    Tan, Raymond R.
    [J]. JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2021, 38 (08) : 573 - 580
  • [25] Model building using bi-level optimization
    G. K. D. Saharidis
    I. P. Androulakis
    M. G. Ierapetritou
    [J]. Journal of Global Optimization, 2011, 49 : 49 - 67
  • [26] Bi-level optimization in papermaking process design
    Linnala, Mikko
    Hamalainen, Jari
    [J]. NORDIC PULP & PAPER RESEARCH JOURNAL, 2012, 27 (04) : 774 - 782
  • [27] High-Level Topology Synthesis Method for Δ-Σ Modulators via Bi-Level Bayesian Optimization
    Lu, Jialin
    Li, Yijie
    Yang, Fan
    Shang, Li
    Zeng, Xuan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (12) : 4389 - 4393
  • [28] Feature construction as a bi-level optimization problem
    Hammami, Marwa
    Bechikh, Slim
    Louati, Ali
    Makhlouf, Mohamed
    Ben Said, Lamjed
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (17): : 13783 - 13804
  • [29] Feature construction as a bi-level optimization problem
    Marwa Hammami
    Slim Bechikh
    Ali Louati
    Mohamed Makhlouf
    Lamjed Ben Said
    [J]. Neural Computing and Applications, 2020, 32 : 13783 - 13804
  • [30] Model building using bi-level optimization
    Saharidis, G. K. D.
    Androulakis, I. P.
    Ierapetritou, M. G.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2011, 49 (01) : 49 - 67