(Circular) backbone colouring: Forest backbones in planar graphs

被引:8
|
作者
Havet, Frederic [1 ,2 ,3 ]
King, Andrew D. [4 ,5 ]
Liedloff, Mathieu [6 ]
Todinca, Loan [6 ]
机构
[1] UNSA, CNRS I3S, Projet Coati, Paris, France
[2] INRIA Sophia Antipolis, Sophia Antipolis, France
[3] Simon Fraser Univ, PIMS, UMI 3069, CNRS, Burnaby, BC V5A 1S6, Canada
[4] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[5] Simon Fraser Univ, Dept Comp Sci, Burnaby, BC V5A 1S6, Canada
[6] Univ Orleans, Lab Informat Fondamentale Orleans, Orleans, France
基金
加拿大自然科学与工程研究理事会;
关键词
Backbone colouring; Planar graph; Tree backbone; NP-complete;
D O I
10.1016/j.dam.2014.01.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider an undirected graph G and a subgraph H of G, on the same vertex set. The q-backbone chromatic number BBCq(G, H) is the minimum k such that G can be properly coloured with colours from {1,...,k}, and moreover for each edge of H, the colours of its ends differ by at least q. In this paper we focus on the case when G is planar and H is a forest. We give a series of NP-hardness results as well as upper bounds for BBCq(G, H), depending on the type of the forest (matching, galaxy, spanning tree). Eventually, we discuss a circular version of the problem. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 134
页数:16
相关论文
共 50 条
  • [21] Colouring of S-labelled planar graphs
    Jin, Ligang
    Wong, Tsai-Lien
    Zhu, Xuding
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 92
  • [22] On the complexity of H-colouring planar graphs
    MacGillivray, G.
    Siggers, M.
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5729 - 5738
  • [23] PERFORMANCE OF ALGORITHMS FOR COLOURING PLANAR GRAPHS.
    Williams, M.H.
    Milne, K.T.
    1600, (27):
  • [24] A note on improper DP-colouring of planar graphs
    Cai, Hongyan
    Sun, Qiang
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS- COMPUTER SYSTEMS THEORY, 2021, 6 (02) : 159 - 166
  • [25] AN ORIENTED COLOURING OF PLANAR GRAPHS WITH GIRTH AT LEAST FOUR
    Borodin, O. V.
    Ivanova, A. O.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2005, 2 : 239 - 249
  • [26] Strong edge-colouring of sparse planar graphs
    Bensmail, Julien
    Harutyunyan, Ararat
    Hocquard, Herve
    Valicov, Petru
    DISCRETE APPLIED MATHEMATICS, 2014, 179 : 229 - 234
  • [27] On the complexity of role colouring planar graphs, trees and cographs
    Purcell, Christopher
    Rombach, Puck
    JOURNAL OF DISCRETE ALGORITHMS, 2015, 35 : 1 - 8
  • [28] 4-colouring of generalized signed planar graphs
    Jiang, Yiting
    Zhu, Xuding
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 23
  • [29] Multiple list colouring triangle free planar graphs
    Jiang, Yiting
    Zhu, Xuding
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 137 : 112 - 117
  • [30] CIRCULAR FLOWS IN PLANAR GRAPHS
    Cranston, Daniel W.
    Li, Jiaao
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) : 497 - 519