Principle management of NPP typical structural components safety operation using specific failure models

被引:1
|
作者
Tarakanov, Pavel [1 ]
Shashurin, Georgy [2 ]
Romanov, Alexandr [1 ]
机构
[1] IMASH RAS, Maliy Kharitonievsky Per H 4, Moscow 101990, Russia
[2] BMSTU, Moscow 105005, Russia
来源
关键词
Risk; Crack; Hydrogen;
D O I
10.1016/j.mspro.2014.06.035
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Fukushima tragedy has initiated rising activities to remove a number of NPPs from operation all over the world. An aggressive hydrogen environment influence is supposed to accelerate a precipitateness of the fatigue fracture process in the considered NPP structure components. Consequently, technical risk and means for defrayment of this risk (in other words, means for NPP safety operation) will increase. It is possible to optimize these means using developed special engineering models of crack propagation in structure components subjected to aggressive hydrogen environment and cycling. (C) 2014 Published by Elsevier Ltd.
引用
收藏
页码:198 / 203
页数:6
相关论文
共 50 条
  • [42] Accounting for Uncertainty in Decision Analytic Models Using Rank Preserving Structural Failure Time Modeling: Application to Parametric Survival Models.
    Bennett, Iain
    Paracha, Noman
    Abrams, Keith
    Ray, Joshua
    VALUE IN HEALTH, 2018, 21 (01) : 105 - 109
  • [43] A Study on Optimal Railway Operation Safety Alternatives Selection Using the FRAM Model for DSC-Based Risk Management
    Kim, Sang-Ahm
    Transactions of the Korean Institute of Electrical Engineers, 2024, 73 (11): : 2069 - 2077
  • [44] Accounting for observation-specific correlation in deterioration modeling of bridge components using binary probit models with random effects
    Qiao, Yu
    Moomen, Milhan
    Zhang, Zhibo
    Saeed, Tariq Usman
    Agbelie, Bismark
    Labi, Samuel
    MAINTENANCE, MONITORING, SAFETY, RISK AND RESILIENCE OF BRIDGES AND BRIDGE NETWORKS, 2016, : 379 - 379
  • [45] An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review
    Blaziak, Mikolaj
    Urban, Szymon
    Wietrzyk, Weronika
    Jura, Maksym
    Iwanek, Gracjan
    Stanczykiewicz, Bartlomiej
    Kuliczkowski, Wiktor
    Zymlinski, Robert
    Pondel, Maciej
    Berka, Petr
    Danel, Dariusz
    Biegus, Jan
    Siennicka, Agnieszka
    BIOMEDICINES, 2022, 10 (09)
  • [46] Optimization of specific methane yield prediction models for biogas crops based on lignocellulosic components using non-linear and crop-specific configurations
    von Cossel, Moritz
    Moehring, Jens
    Kiesel, Andreas
    Lewandowski, Iris
    INDUSTRIAL CROPS AND PRODUCTS, 2018, 120 : 330 - 342
  • [47] Analysis for Predictors of Failure of Orthodontic Mini-implant Using Patient-Specific Finite Element Models
    Takahiro Toriya
    Toru Kitahara
    Hiroto Hyakutake
    Mitsugu Todo
    Ichiro Takahashi
    Annals of Biomedical Engineering, 2023, 51 : 594 - 603
  • [48] Analysis for Predictors of Failure of Orthodontic Mini-implant Using Patient-Specific Finite Element Models
    Toriya, Takahiro
    Kitahara, Toru
    Hyakutake, Hiroto
    Todo, Mitsugu
    Takahashi, Ichiro
    ANNALS OF BIOMEDICAL ENGINEERING, 2023, 51 (03) : 594 - 603
  • [49] Controlling the risks of mechanical heart valve failure using product life cycle-based safety management
    Cromheecke, M
    Koornneef, F
    van Gaalen, G
    de Mol, B
    SAFETY IN MEDICINE, 2000, : 175 - 192
  • [50] Management of Heart Failure In Cardiac Amyloidosis Using An Ambulatory Diuresis Clinic: An Analysis of Safety And Health Care Utilization
    Vaishnav, Joban
    Hubbard, Abby
    Chasler, Jessica E.
    Lepley, Diane
    Cuomo, Kimberly
    Riley, Sarah
    Menzel, Kathryn
    Fajardo, Johana
    Sharma, Kavita
    Judge, Daniel P.
    Russell, Stuart D.
    Gilotra, Nisha A.
    JOURNAL OF CARDIAC FAILURE, 2020, 26 (10) : S52 - S53