On the asymptotically stochastic computational modeling of microstructures

被引:1
|
作者
Cox, DD
Kloucek, P
Reynolds, DR
机构
[1] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
[2] Rice Univ, Dept Stat, Houston, TX 77005 USA
关键词
microstructures; crystalline materials; weak white noise; steepest descent algorithm; weak convergence; calculus of variations;
D O I
10.1016/j.future.2003.07.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider a class of alloys and ceramics with equilibria described by non-attainable infima of non-quasiconvex variational integrals. Such situations frequently arise when atomic lattice structure plays an important role at the mesoscopic continuum level. We prove that standard variational approaches associated with gradient based relaxation of non-quasiconvex integrals in Banach or Hilbert spaces are not capable of generating relaxing sequences for problems with non-attainable structure. We introduce a variational principle suitable for the computational purposes of approaching non-attainable infima of variational integrals. We demonstrate that this principle is suitable for direct calculations of the Young Measures on a computational example in one dimension. The new variational principle provides the possibility to approximate crystalline microstructures using a Fokker-Planck equation at the meso-scale. We provide an example of such a construction. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:409 / 424
页数:16
相关论文
共 50 条
  • [21] Attractive interactions in the microstructures of asymptotically flat black holes
    Chen, Deyou
    Tao, Jun
    Yang, Xuetao
    PHYSICS OF THE DARK UNIVERSE, 2023, 42
  • [22] Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis
    Clement, A.
    Soize, C.
    Yvonnet, J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 91 (08) : 799 - 824
  • [23] ASYMPTOTICALLY COMPATIBLE SCHEMES FOR STOCHASTIC HOMOGENIZATION
    Sun, Qi
    Du, Qiang
    Ming, Ju
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1942 - 1960
  • [24] Asymptotically optimal dynamic stochastic approximation
    Uosaki, K
    Hatanaka, T
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 269 - 274
  • [25] Graph-based simulated annealing: a hybrid approach to stochastic modeling of complex microstructures
    Stenzel, O.
    Westhoff, D.
    Manke, I.
    Kasper, M.
    Kroese, D. P.
    Schmidt, V.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (05)
  • [26] Computational modeling of the effect of equiaxed heterogeneous microstructures on strength and ductility of dual phase steels
    Abid, Najmul H.
    Abu Al-Rub, Rashid K.
    Palazotto, Anthony N.
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 103 : 20 - 37
  • [27] Crack growth in stochastic microstructures
    Arwade, S
    Grigoriu, M
    Ingraffea, AR
    Miller, MP
    STOCHASTIC STRUCTURAL DYNAMICS, 1999, : 265 - 272
  • [28] Computational modeling of phase connectivity in microstructures of porous materials during sintering and grain growth
    Shimizu, M
    Matsubara, H
    Nomura, H
    Tomioka, H
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2003, 111 (03) : 205 - 211
  • [29] Measurement and Stochastic Computational Modeling of the Elastic Properties of Parallel Strand Lumber
    Arwade, Sanjay R.
    Clouston, Peggi L.
    Winans, Russell
    JOURNAL OF ENGINEERING MECHANICS, 2009, 135 (09) : 897 - 905
  • [30] Editorial: Computational Probability and Mathematical Modeling - A Stochastic Approach in Applied Sciences
    Cantu-Gonzalez, Jose Roberto
    Almaguer, F-Javier
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2019, 5