IPr sets with polynomial weights and Szemeredi's theorem

被引:0
|
作者
McCutcheon, R. [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
IP-set; multiple recurrence; Ramsey theory; Szemeredi's theorem;
D O I
10.1016/j.jcta.2006.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
yIn the mid 1980s H. Furstenberg and Y. Katznelson defined IPr sets in abelian groups as, roughly, sets consisting of all finite sums of r fixed elements. They obtained, via their powerful IP Szemeredi theorem for commuting groups of measure preserving transformations, many IP, set applications for the density Ramsey theory of abelian groups, including the striking result that, given e > 0 and k is an element of N, there exists some r is an element of N such that for any IPr set R subset of Z and any E subset of Z with upper density > epsilon, E contains a k-term arithmetic progression having common difference r is an element of R. Here, polynomial versions of these results are obtained as applications of a recently proved polynomial extension to the Furstenberg-Katznelson IP Szemeredi theorem. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:167 / 174
页数:8
相关论文
共 50 条
  • [41] Polynomial Schur's Theorem
    Liu, Hong
    Pach, Peter Pal
    Sandor, Csaba
    COMBINATORICA, 2022, 42 (SUPPL 2) : 1357 - 1384
  • [42] Polynomial Schur’s Theorem
    Hong Liu
    Péter Pál Pach
    Csaba Sándor
    Combinatorica, 2022, 42 : 1357 - 1384
  • [43] The Szemeredi-Trotter theorem in the complex plane
    Toth, Csaba D.
    COMBINATORICA, 2015, 35 (01) : 95 - 126
  • [45] Approximate multipartite version of the Hajnal-Szemeredi theorem
    Csaba, Bela
    Mydlarz, Marcelo
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (02) : 395 - 410
  • [46] Towards a Weighted Version of the Hajnal-Szemeredi Theorem
    Balogh, Jozsef
    Kemkes, Graeme
    Lee, Choongbum
    Young, Stephen J.
    COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (03): : 346 - 350
  • [47] Quadripartite version of the Hajnal-Szemeredi theorem
    Martin, Ryan
    Szemeredi, Endre
    DISCRETE MATHEMATICS, 2008, 308 (19) : 4337 - 4360
  • [48] A discrepancy version of the Hajnal-Szemeredi theorem
    Balogh, Jozsef
    Csaba, Bela
    Pluhar, Andras
    Treglown, Andrew
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (03): : 444 - 459
  • [49] A degree sequence Hajnal-Szemeredi theorem
    Treglown, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 118 : 13 - 43
  • [50] A modular Szemeredi-Trotter theorem for hyperbolas
    Bourgain, Jean
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (17-18) : 793 - 796