Dichotomies, structure, and concentration in normed spaces

被引:4
|
作者
Paouris, Grigoris [1 ]
Valettas, Petros [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
Talagrand's L-1 - L-2 bound; Superconcentration; Gaussian concentration; Borsuk-Ulam theorem; Dvoretzky's theorem; Alon-Milman theorem; SMALL BALL PROBABILITY; DVORETZKYS THEOREM; RANDOM VERSION; INEQUALITIES; CONSTANTS;
D O I
10.1016/j.aim.2018.05.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use probabilistic, topological and combinatorial methods to establish the following deviation inequality: For any normed space X = (R-n, || . ||) there exists an invertible linear map T : (RRn)-R-n -> with p(|vertical bar vertical bar TG vertical bar vertical bar - E vertical bar vertical bar TG vertical bar vertical bar| > epsilon E vertical bar vertical bar TG vertical bar vertical bar) <= C exp (-cmax{epsilon(2), epsilon} log n), epsilon > 0, where G is the standard n-dimensional Gaussian vector and C, c > 0 are universal constants. It follows that for every epsilon is an element of (0, 1) and for every normed space X = (R-n, || . ||) there exists a k-dimensional subspace of X which is (1 + epsilon)-Euclidean and k >= c epsilon log n/log 1/epsilon. This improves by a logarithmic on epsilon term the best previously known result due to G. Schechtman. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:438 / 464
页数:27
相关论文
共 50 条
  • [21] ON MATRICALLY NORMED SPACES
    EFFROS, EG
    RUAN, ZJ
    PACIFIC JOURNAL OF MATHEMATICS, 1988, 132 (02) : 243 - 264
  • [22] ISOMETRIES IN NORMED SPACES
    BAKER, JA
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (06): : 655 - &
  • [23] NORMED HYPERVECTOR SPACES
    Raja, P.
    Vaezpour, S. M.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2007, 2 (02): : 35 - 44
  • [24] LOCAL-STRUCTURE THEORY FOR QUASI-NORMED SPACES
    GORDON, Y
    KALTON, NJ
    BULLETIN DES SCIENCES MATHEMATIQUES, 1994, 118 (05): : 441 - 453
  • [25] A new view on fuzzy automata normed linear structure spaces
    Madhuri, V.
    Amudhambigai, B.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2019, 16 (06): : 65 - 74
  • [26] Differentiation in Normed Spaces
    Endou, Noboru
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2013, 21 (02): : 95 - 102
  • [27] Probabilistic normed spaces
    Cobzas, S.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 489 - 489
  • [28] NORMED LINEAR SPACES
    GELBAUM, BR
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (05): : 567 - &
  • [29] Robustness of nonuniform (μ, ν)-dichotomies in Banach spaces
    Chang, Xiaoyuan
    Zhang, Jimin
    Qin, Jiahu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 582 - 594
  • [30] Fixed point theorems for contractions in fuzzy normed spaces and intuitionistic fuzzy normed spaces
    Zhu, Jiang
    Wang, Yunjie
    Zhu, Cheng-Cheng
    FIXED POINT THEORY AND APPLICATIONS, 2013, : 1 - 10