Dichotomies, structure, and concentration in normed spaces

被引:4
|
作者
Paouris, Grigoris [1 ]
Valettas, Petros [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
Talagrand's L-1 - L-2 bound; Superconcentration; Gaussian concentration; Borsuk-Ulam theorem; Dvoretzky's theorem; Alon-Milman theorem; SMALL BALL PROBABILITY; DVORETZKYS THEOREM; RANDOM VERSION; INEQUALITIES; CONSTANTS;
D O I
10.1016/j.aim.2018.05.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use probabilistic, topological and combinatorial methods to establish the following deviation inequality: For any normed space X = (R-n, || . ||) there exists an invertible linear map T : (RRn)-R-n -> with p(|vertical bar vertical bar TG vertical bar vertical bar - E vertical bar vertical bar TG vertical bar vertical bar| > epsilon E vertical bar vertical bar TG vertical bar vertical bar) <= C exp (-cmax{epsilon(2), epsilon} log n), epsilon > 0, where G is the standard n-dimensional Gaussian vector and C, c > 0 are universal constants. It follows that for every epsilon is an element of (0, 1) and for every normed space X = (R-n, || . ||) there exists a k-dimensional subspace of X which is (1 + epsilon)-Euclidean and k >= c epsilon log n/log 1/epsilon. This improves by a logarithmic on epsilon term the best previously known result due to G. Schechtman. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:438 / 464
页数:27
相关论文
共 50 条
  • [1] Concentration of the distance in finite dimensional normed spaces
    Arias-De-Reyna, J
    Ball, K
    Villa, R
    MATHEMATIKA, 1998, 45 (90) : 245 - 252
  • [2] On the Topological Structure of KM Fuzzy Metric Spaces and Normed Spaces
    Xiao, Jian-Zhong
    Zhu, Xing-Hua
    Zhou, Hao
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (08) : 1575 - 1584
  • [3] [φ, p]-normed spaces and Menger [φ, p]-normed spaces
    Wu, Yaoqiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 6793 - 6800
  • [4] Dichotomies for Lp spaces
    Glab, Szymon
    Strobin, Filip
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (01) : 382 - 390
  • [5] DICHOTOMIES FOR ORLICZ SPACES
    Strobin, Filip
    MATHEMATICA SLOVACA, 2016, 66 (01) : 245 - 256
  • [6] Dichotomies for Lorentz spaces
    Glab, Szymon
    Strobin, Filip
    Yang, Chan Woo
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (07): : 1228 - 1242
  • [7] Structure of normed spaces with extremal distance to the Euclidean space
    Anisca, R
    Tcaciuc, A
    Tomczak-Jaegermann, N
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (01): : 267 - 283
  • [8] Dichotomies for the spaces of real sequences
    Casevitz, P
    FUNDAMENTA MATHEMATICAE, 2000, 165 (03) : 249 - 284
  • [9] ORTHONORMAL BASES AND A STRUCTURE OF FINITE DIMENSIONAL NORMED LINEAR SPACES
    Tanaka, Ryotaro
    Saito, Kichi-Suke
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (01): : 89 - 97
  • [10] Angles in normed spaces
    Vitor Balestro
    Ákos G. Horváth
    Horst Martini
    Ralph Teixeira
    Aequationes mathematicae, 2017, 91 : 201 - 236