Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data

被引:0
|
作者
You, Jiaxuan [1 ]
Li, Xiaocheng [2 ]
Low, Melvin [1 ]
Lobell, David [3 ]
Ermon, Stefano [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Agricultural monitoring, especially in developing countries, can help prevent famine and support humanitarian efforts. A central challenge is yield estimation, i.e., predicting crop yields before harvest. We introduce a scalable, accurate, and inexpensive method to predict crop yields using publicly available remote sensing data. Our approach improves existing techniques in three ways. First, we forego hand-crafted features traditionally used in the remote sensing community and propose an approach based on modern representation learning ideas. We also introduce a novel dimensionality reduction technique that allows us to train a Convolutional Neural Network or Long-short Term Memory network and automatically learn useful features even when labeled training data are scarce. Finally, we incorporate a Gaussian Process component to explicitly model the spatio-temporal structure of the data and further improve accuracy. We evaluate our approach on county-level soybean yield prediction in the U.S. and show that it outperforms competing techniques.
引用
收藏
页码:4559 / 4565
页数:7
相关论文
共 50 条
  • [31] Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning
    Khaki, Saeed
    Pham, Hieu
    Wang, Lizhi
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [32] Crop yield assessment from remote sensing
    Doraiswamy, PC
    Moulin, S
    Cook, PW
    Stern, A
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2003, 69 (06): : 665 - 674
  • [33] Remote sensing as a tool enabling the spatial use of crop models for crop diagnosis and yield prediction.
    Guérif, M
    Launay, M
    Duke, C
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1477 - 1479
  • [34] Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning
    Saeed Khaki
    Hieu Pham
    Lizhi Wang
    Scientific Reports, 11
  • [35] Crop yield estimation by satellite remote sensing
    Ferencz, C
    Bognár, P
    Lichtenberger, J
    Hamar, D
    Tarcsai, G
    Timár, G
    Molnár, G
    Pásztor, S
    Steinbach, P
    Székely, B
    Ferencz, OE
    Ferencz-Arkos, I
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (20) : 4113 - 4149
  • [36] Estimation of Corn and Soybeans Yield using Remote Sensing and Crop Yield data in the United States
    Kim, Nari
    Lee, Yang-Won
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVI, 2014, 9239
  • [37] Estimation of winter wheat yield by using remote sensing data and crop model
    Guo, Jianmao
    Zheng Tengfei
    Qi, Wang
    Jia, Yang
    Shi Junyi
    Zhu Jinhui
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY IX, 2012, 8513
  • [38] Application of Remote Sensing Data in Crop Yield and Quality: Systematic Literature Review
    Cornak, Anton
    Delina, Radoslav
    QUALITY INNOVATION PROSPERITY-KVALITA INOVACIA PROSPERITA, 2022, 26 (03): : 22 - 36
  • [39] Small area estimation of crop yield using remote sensing satellite data
    Singh, R
    Semwal, DP
    Rai, A
    Chhikara, RS
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (01) : 49 - 56
  • [40] Cotton Growth Monitoring and Yield Estimation Based on Assimilation of Remote Sensing Data and Crop Growth Model
    Chen, Yepei
    Mei, Xin
    Liu, Junyi
    2015 23RD INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2015,