Invariants of solvable rigid Lie algebras up to dimension 8

被引:22
|
作者
Campoamor-Stursberg, R [1 ]
机构
[1] Univ Complutense Madrid, Fac CC Matemat, Dept Geometria & Topol, E-28040 Madrid, Spain
来源
关键词
D O I
10.1088/0305-4470/35/30/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The invariants of all complex solvable rigid Lie algebras up to dimension 8 are computed. Moreover we show, for rank 1 solvable algebras, some criteria to deduce the non-existence of nontrivial invariants or the existence of fundamental sets of invariants formed by rational functions of the Casimir invariants of the associated nilradical.
引用
收藏
页码:6293 / 6306
页数:14
相关论文
共 50 条
  • [41] Invariants in Varieties of Lie Algebras
    Kofinas, Constantinos E.
    JOURNAL OF LIE THEORY, 2024, 34 (04) : 957 - 974
  • [42] Lie algebras, invariants of motion
    Sarris, C. M.
    Proto, A. N.
    CONDENSED MATTER THEORIES, VOL 20, 2006, 20 : 497 - +
  • [43] Computer-Aided Analysis of Solvable Rigid Lie Algebras with a Given Eigenvalue Spectrum
    Campoamor-Stursberg, Rutwig
    Oviano Garcia, Francisco
    AXIOMS, 2022, 11 (09)
  • [44] Rigidity-preserving and cohomology-decreasing extensions of solvable rigid Lie algebras
    Ancochea Bermudez, J. M.
    Campoamor-Stursberg, R.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (03): : 525 - 539
  • [45] MINIMAL NONNILPOTENT SOLVABLE LIE ALGEBRAS
    STITZINGER, EL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 28 (01) : 47 - +
  • [46] Local derivations on Solvable Lie algebras
    Ayupov, Sh A.
    Khudoyberdiyev, A. Kh
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (07): : 1286 - 1301
  • [47] Lie solvable Leavitt path algebras
    Tran Giang Nam
    Zhang, Zerui
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (10)
  • [48] Solvable Lie algebras with triangular nilradicals
    Tremblay, S
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 789 - 806
  • [49] Novikov structures on solvable Lie algebras
    Burde, Dietrich
    Dekimpe, Karel
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) : 1837 - 1855
  • [50] On the level of some solvable lie algebras
    V. V. Gorbatsevich
    Siberian Mathematical Journal, 1998, 39 : 872 - 883