Invariants of solvable rigid Lie algebras up to dimension 8

被引:22
|
作者
Campoamor-Stursberg, R [1 ]
机构
[1] Univ Complutense Madrid, Fac CC Matemat, Dept Geometria & Topol, E-28040 Madrid, Spain
来源
关键词
D O I
10.1088/0305-4470/35/30/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The invariants of all complex solvable rigid Lie algebras up to dimension 8 are computed. Moreover we show, for rank 1 solvable algebras, some criteria to deduce the non-existence of nontrivial invariants or the existence of fundamental sets of invariants formed by rational functions of the Casimir invariants of the associated nilradical.
引用
收藏
页码:6293 / 6306
页数:14
相关论文
共 50 条
  • [1] On the invariants of some solvable rigid Lie algebras
    Campoamor-Stursberg, R
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (02) : 771 - 784
  • [2] Invariants of solvable Lie algebras of dimension six
    Ndogmo, JC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (11): : 2273 - 2287
  • [3] Properties of the invariants of solvable Lie algebras
    Ndogmo, JC
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2000, 43 (04): : 459 - 471
  • [4] Invariants of the nilpotent and solvable triangular Lie algebras
    Tremblay, S
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42): : 9085 - 9099
  • [5] Classification of solvable real rigid Lie algebras with a nilradical of dimension n ≤ 6
    Bermudez, J. M. Ancochea
    Campoamor-Stursberg, R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 : 54 - 75
  • [6] A class of solvable Lie algebras and their Casimir invariants
    Snobl, L
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (12): : 2687 - 2700
  • [7] Real solvable algebraically rigid Lie algebras
    Bermudez, J. M. Ancochea
    Campoamor-Stursberg, R.
    Vergnolle, L. Garcia
    Goze, M.
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (03): : 187 - 195
  • [8] SOLVABLE LIE-ALGEBRAS OF DIMENSION 6
    TURKOWSKI, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (06) : 1344 - 1350
  • [9] Solvable Lie algebras with naturally graded nilradicals and their invariants
    Ancochea, JM
    Campoamor-Stursberg, R
    Vergnolle, LG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (06): : 1339 - 1355
  • [10] Solvable real rigid Lie algebras are not necessarily completely solvable.
    Ancochea Bermudez, J. M.
    Campoamor-Stursberg, R.
    Garcia Vergnolle, L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) : 657 - 664