Pharmaceuticals degradation by UV and UV/H2O2 treatments

被引:11
|
作者
Bozzi, A [1 ]
Lopez, A [1 ]
Mascolo, G [1 ]
Tiravantl, G [1 ]
机构
[1] CNR, Ist Ric Sulle Acque, I-70123 Bari, Italy
关键词
chemical oxidation; degradation by-products; pharmaceutical intermediates; UV; UV/H2O2;
D O I
10.2166/ws.2002.0041
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The degradation by UV and UV/H2O2 treatments of the pharmaceutical intermediate 5-methyl-1,3,4-thiadiazole-2-methylthiol (MMTD-Me) has been investigated and compared to that of its parent compound [5-methyl-1,3,4-thiadiazole -2-thiol (MMTD)] previously studied. The investigation has been carrie out with a 17 W low pressure mercury lamp, at room temperature, with an initial MMTD-Me concentration of 1 mg/l and with a molar ratio H2O2/substrate of 100/1. The results show that: (i) the complete MMTD-Me removal is achieved within 60 and 20 minutes by UV and UV/H2O2 treatment respectively; (ii) the UV only irradiation does not cause any MMTD-Me mineralization; (iii) the UV/H2O2 treatment, after 4 hours, leads to a complete mineralization of MMTD-Me organic sulfur and to a partial mineralization of carbon and nitrogen (79 and 16% respectively). Degradation by-products identification, performed by HPLC-UV-MS, revealed that the UV only irradiation gives rise to the sequential transformation of MMTD-Me into two by-products one of which, the last one, accumulates in the solution. Conversely, the UV/H2O2 treatment leads to the formation of two intermediate by-products that undergo further degradation with the breakdown of the thiadiazole ring. These results confirm the effectiveness of UV based processes, alone or in combination with H2O2, in degrading pharmaceutical intermediates.
引用
收藏
页码:19 / 26
页数:8
相关论文
共 50 条
  • [31] Comparative evaluation of metoprolol degradation by UV/chlorine and UV/H2O2 processes
    Gao, Yu-qiong
    Zhang, Jia
    Li, Cong
    Tian, Fu-xiang
    Gao, Nai-yun
    CHEMOSPHERE, 2020, 243
  • [32] Influence of UV dose on the UV/H2O2 process for the degradation of carbamazepine in wastewater
    Somathilake, Purnima
    Dominic, John Albino
    Achari, Gopal
    Langford, Cooper H.
    Tay, Joo-Hwa
    ENVIRONMENTAL TECHNOLOGY, 2019, 40 (23) : 3031 - 3039
  • [33] Degradation kinetics of caffeine in water by UV/H2O2 and UV/TiO2
    Rendel, Pedro M.
    Rytwo, Giora
    DESALINATION AND WATER TREATMENT, 2020, 173 : 231 - 242
  • [34] Degradation of Acid Pharmaceuticals in the UV/H2O2 Process: Effects of Humic Acid and Inorganic Salts
    Yuan, Hui
    Zhou, Xuefei
    Zhang, Ya-Lei
    CLEAN-SOIL AIR WATER, 2013, 41 (01) : 43 - 50
  • [35] Photosensitized chlorobenzene degradation by UV/H2O2 oxidation
    Oncescu, Tatiana
    Nitoi, Ines
    Oancea, Petruta
    Mihai, Stefanescu
    Lucian, Constantin
    Laurentiu, Dinu
    JOURNAL OF ADVANCED OXIDATION TECHNOLOGIES, 2008, 11 (01) : 149 - 154
  • [36] H2O2/UV enhanced degradation of pesticides in wastewater
    Kowalska, E
    Janczarek, M
    Hupka, J
    Grynkiewicz, M
    WATER SCIENCE AND TECHNOLOGY, 2004, 49 (04) : 261 - 266
  • [37] Degradation of 17 Benzodiazepines by the UV/H2O2 Treatment
    You, Wen-Dan
    Ye, Pu
    Yang, Bin
    Luo, Xin
    Fang, Jie
    Mai, Zi-Tian
    Sun, Jian-Liang
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2021, 9
  • [38] Photochemical degradation of diethyl phthalate with UV/H2O2
    Xu, Bin
    Gao, Nai-Yun
    Sun, Xiao-Feng
    Xia, Sheng-Ji
    Rui, Min
    Simonnot, Marie-Odile
    Causserand, Christel
    Zhao, Jian-Fu
    JOURNAL OF HAZARDOUS MATERIALS, 2007, 139 (01) : 132 - 139
  • [39] Degradation of acetic acid by UV/H2O2 reaction
    Kang, Chunli
    Peng, Fei
    Guo, Jing
    Guo, Ping
    Xue, Honghai
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 5030 - 5033
  • [40] Photochemical degradation of triclosan by UV/H2O2 in water
    Fu, Yong-Sheng
    Shi, Hong-Le
    Liu, Yi-Qing
    Zhou, Gao-Feng
    Zhongguo Huanjing Kexue/China Environmental Science, 2018, 38 (02): : 616 - 626