Using hidden scale for salient object detection

被引:26
|
作者
Chalmond, Bernard [1 ]
Francesconi, Benjamin
Herbin, Stephane
机构
[1] Ecole Normale Super, Ctr Math & Leurs Applicat, CNRS, UMR 8536, F-94235 Cachan, France
[2] Off Natl Etud & Rech Aerosp, Dept Informat Proc & Modeling, F-92322 Chatillon, France
关键词
focus; learning; object detection; probabilistic modeling; remote sensing; saliency; scale;
D O I
10.1109/TIP.2006.877380
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a method for detecting salient regions in remote-sensed images, based on scale and contrast interaction. We consider the focus on salient structures as the first stage of an object detection/recognition algorithm, where the salient regions are those likely to contain objects of interest. Salient objects are modeled as spatially localized and contrasted structures with any kind of shape or size. Their detection exploits a probabilistic mixture model that takes two series of multiscale features as input, one that is more sensitive to contrast information, and one that is able to select scale. The model combines them to classify each pixel in salient/nonsalient class, giving a binary segmentation of the image. The few parameters are learned with an EM-type algorithm.
引用
收藏
页码:2644 / 2656
页数:13
相关论文
共 50 条
  • [21] SALIENT OBJECT DETECTION USING NORMALIZED CUT AND GEODESICS
    Fu, Keren
    Gong, Chen
    Gu, Irene Y. H.
    Yang, Jie
    Shi, Pengfei
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1100 - 1104
  • [22] Salient object detection method using random graph
    Fatemeh Nouri
    Kamran Kazemi
    Habibollah Danyali
    [J]. Multimedia Tools and Applications, 2018, 77 : 24681 - 24699
  • [23] FCN Salient Object Detection Using Region Cropping
    Hua, Yikai
    Gu, Xiaodong
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: IMAGE PROCESSING, PT III, 2019, 11729 : 360 - 370
  • [24] What is a Salient Object? A Dataset and a Baseline Model for Salient Object Detection
    Borji, Ali
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (02) : 742 - 756
  • [25] Multi-scale deep neural network for salient object detection
    Xiao, Fen
    Deng, Wenzheng
    Peng, Liangchan
    Cao, Chunhong
    Hu, Kai
    Gao, Xieping
    [J]. IET IMAGE PROCESSING, 2018, 12 (11) : 2036 - 2041
  • [26] Multi-scale Pyramid Pooling Network for salient object detection
    Dakhia, Abdelhafid
    Wang, Tiantian
    Lu, Huchuan
    [J]. NEUROCOMPUTING, 2019, 333 : 211 - 220
  • [27] MULTI-SCALE ANALYSIS OF COLOR AND TEXTURE FOR SALIENT OBJECT DETECTION
    Tang, Ketan
    Au, Oscar C.
    Fang, Lu
    Yu, Zhiding
    Guo, Yuanfang
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [28] RGBT Salient Object Detection: A Large-Scale Dataset and Benchmark
    Tu, Zhengzheng
    Ma, Yan
    Li, Zhun
    Li, Chenglong
    Xu, Jieming
    Liu, Yongtao
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4163 - 4176
  • [29] Salient object detection based on multi-scale region contrast
    Cheng Pei-rui
    Wang Jian-li
    Wang Bin
    Li Zheng-wei
    Wu Yuan-hao
    [J]. CHINESE OPTICS, 2016, 9 (01): : 97 - 105
  • [30] Multi-Scale Global Contrast CNN for Salient Object Detection
    Feng, Weijia
    Li, Xiaohui
    Gao, Guangshuai
    Chen, Xingyue
    Liu, Qingjie
    [J]. SENSORS, 2020, 20 (09)