A Characterization of Consistent Digital Line Segments in Z2

被引:2
|
作者
Chowdhury, Iffat [1 ]
Gibson, Matt [1 ]
机构
[1] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
来源
ALGORITHMS - ESA 2015 | 2015年 / 9294卷
关键词
CONNECTIVITY; ALGORITHMS;
D O I
10.1007/978-3-662-48350-3_29
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Our concern is the digitalization of line segments in Z(2) as considered by Chun et al. [5] and Christ et al. [4]. The key property that differentiates the research of Chun et al. and Christ et al. from other research in digital line segment construction is that the intersection of any two segments must be connected. Such a system of segments is called a consistent digital line segments system (CDS). Chun et al. give a construction for all segments in Z(d) that share a common endpoint (called consistent digital rays (CDR)) that has asymptotically optimal Hausdorff distance, and Christ et al. give a complete CDS in Z(2) with optimal Hausdorff distance. Christ et al. also give a characterization of CDRs in Z(2), and they leave open the question on how to characterize CDSes in Z(2). In this paper, we answer one of the most important open question regarding CDSes in Z(2) by giving the characterization asked for by Christ et al. We obtain the characterization by giving a set of necessary and sufficient conditions that a CDS must satisfy.
引用
收藏
页码:337 / 348
页数:12
相关论文
共 50 条
  • [1] Consistent Digital Line Segments
    Christ, Tobias
    Palvolgyi, Domotor
    Stojakovic, Milos
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'10), 2010, : 11 - 18
  • [2] Consistent Digital Line Segments
    Tobias Christ
    Dömötör Pálvölgyi
    Miloš Stojaković
    [J]. Discrete & Computational Geometry, 2012, 47 : 691 - 710
  • [3] Consistent Digital Line Segments
    Christ, Tobias
    Palvoelgyi, Doemoetoer
    Stojakovic, Milos
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (04) : 691 - 710
  • [4] A SUBALGEBRA OF EXTA'' (Z2,Z2)
    ZACHARIOU, A
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (05) : 647 - +
  • [5] A Z2 x Z2 standard model
    Blaszczyk, Michael
    Nibbelink, Stefan Groot
    Ratz, Michael
    Ruehle, Fabian
    Trapletti, Michele
    Vaudrevange, Patrick K. S.
    [J]. PHYSICS LETTERS B, 2010, 683 (4-5) : 340 - 348
  • [6] AN INFINITE SUBALGEBRA OF EXTA(Z2 Z2
    MAHOWALD, M
    TANGORA, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 132 (01) : 263 - &
  • [7] On covering a digital disc with concentric circles in Z2
    Bera, Sahadev
    Bhowmick, Partha
    Stelldinger, Peer
    Bhattacharya, Bhargab B.
    [J]. THEORETICAL COMPUTER SCIENCE, 2013, 506 : 1 - 16
  • [8] F(Z,1 ,Z2 ) plus A(Z1 ,Z2 )G(Z1 ,Z2 ) equals H(Z1 ,Z2 )..
    Lai, Yhean-Sen
    [J]. IEEE transactions on circuits and systems, 1986, CAS-33 (05): : 542 - 544
  • [9] Dyadic diaphony of digital nets over Z2
    Dick, J
    Pillichshammer, F
    [J]. MONATSHEFTE FUR MATHEMATIK, 2005, 145 (04): : 285 - 299
  • [10] Z2[u]Z2[u]-Additive codes
    Shashirekha, G.
    Bhatta, G. R. Vadiraja
    Poojary, Prasanna
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,