Consistent Digital Line Segments

被引:2
|
作者
Christ, Tobias [1 ]
Palvolgyi, Domotor [1 ]
Stojakovic, Milos [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Comp Sci, Zurich, Switzerland
关键词
D O I
10.1145/1810959.1810962
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a novel and general approach for digitalization of line segments in the plane that satisfies a set of axioms naturally arising from Euclidean axioms. In particular, we show how to derive such a system of digital segments from any total order on the integers. As a consequence, using a well-chosen total order, we manage to define a system of digital segments such that all digital segments are, in Hausdorff metric, optimally close to their corresponding Euclidean segments, thus giving an explicit construction that resolves the main question of [1].
引用
收藏
页码:11 / 18
页数:8
相关论文
共 50 条
  • [1] Consistent Digital Line Segments
    Tobias Christ
    Dömötör Pálvölgyi
    Miloš Stojaković
    [J]. Discrete & Computational Geometry, 2012, 47 : 691 - 710
  • [2] Consistent Digital Line Segments
    Christ, Tobias
    Palvoelgyi, Doemoetoer
    Stojakovic, Milos
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (04) : 691 - 710
  • [3] A Characterization of Consistent Digital Line Segments in Z2
    Chowdhury, Iffat
    Gibson, Matt
    [J]. ALGORITHMS - ESA 2015, 2015, 9294 : 337 - 348
  • [4] HIGH DIMENSIONAL CONSISTENT DIGITAL SEGMENTS
    Chiu, Man-Kwun
    Korman, Matias
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) : 2566 - 2590
  • [5] DIGITAL STRAIGHT LINE SEGMENTS
    ROSENFELD, A
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1974, C 23 (12) : 1264 - 1269
  • [6] REPRESENTATION OF DIGITAL LINE SEGMENTS AND THEIR PREIMAGES
    ANDERSON, TA
    KIM, CE
    [J]. COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1985, 30 (03): : 279 - 288
  • [7] CHORD PROPERTIES OF DIGITAL STRAIGHT LINE SEGMENTS
    Samieinia, Shiva
    [J]. MATHEMATICA SCANDINAVICA, 2010, 106 (02) : 169 - 195
  • [8] ON THE NUMBER OF DIGITAL STRAIGHT-LINE SEGMENTS
    BERENSTEIN, CA
    LAVINE, D
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1988, 10 (06) : 880 - 887
  • [10] Digital straight line segments in finite topological spaces
    Eguchi, M
    Imura, H
    Fuwa, Y
    Nakamura, Y
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1998, 81 (02): : 34 - 45