Anodes for Lithium-Ion Batteries Obtained by Sintering Silicon Nanopowder

被引:3
|
作者
Astrova, E. V. [1 ]
Voronkov, V. B. [1 ]
Rumyantsev, A. M. [1 ]
Nashchekin, A. V. [1 ]
Parfen'eva, A. V. [1 ]
Lozhkina, D. A. [1 ]
机构
[1] Russian Acad Sci, Ioffe Inst, St Petersburg 194021, Russia
关键词
silicon anodes; lithium-ion batteries; sintering; silicon nanopowder; CAPACITY; SI;
D O I
10.1134/S1023193519020010
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Isochronous annealing of preliminarily compacted silicon nanopowder specimens is investigated. The density, structure, and conductivity of the material are determined as a function of sintering temperature. The electrochemical characteristics of anodes, which were sintered in the temperature range of 1100 to 1200 degrees C, are studied using galvanostatic tests and cyclic voltammetry. It is found that the specimen, which was annealed at T = 1150 degrees C, shows the best results. This specimen has a density of 1.60 g/cm(3), a connected silicon framework, and an open-pore system.
引用
收藏
页码:184 / 193
页数:10
相关论文
共 50 条
  • [31] Structure design of silicon anodes for high energy lithium-ion batteries
    Liu, Nian
    Cui, Yi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [32] Silicon Anodes for Lithium-Ion Batteries Based on a New Polyimide Binder
    Lusztig, David
    Luski, Shalom
    Shpigel, Natanel
    Vangapally, Naresh
    Aurbach, Doron
    BATTERIES & SUPERCAPS, 2024, 7 (08)
  • [33] Recent trends in silicon/graphene nanocomposite anodes for lithium-ion batteries
    Sehrawat, Poonam
    Shabir, Abgeena
    Abid
    Julien, C. M.
    Islam, S. S.
    JOURNAL OF POWER SOURCES, 2021, 501
  • [34] Stable silicon/carbon anodes for lithium-ion batteries prepared by emulsiontemplating
    Zhang, Yuzi
    Lucht, Brett
    Bose, Arijit
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [35] Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries
    Choi, Nam-Soon
    Ha, Se-Young
    Lee, Yongwon
    Jang, Jun Yeong
    Jeong, Myung-Hwan
    Shin, Woo Cheol
    Ue, Makoto
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2015, 6 (02) : 35 - 49
  • [36] Strategy for enhanced performance of silicon nanoparticle anodes for lithium-ion batteries
    Chen, Xusheng
    Zheng, Jian
    Li, Luming
    Chu, Wei
    RSC ADVANCES, 2022, 12 (28) : 17889 - 17897
  • [37] Silicon-based anodes for the next generation of lithium-ion batteries
    Smirnova, Alevtina
    Kolla, Praveen
    Schrandt, Matthew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [38] Surface-modified silicon nanowire anodes for lithium-ion batteries
    Xu, Wanli
    Vegunta, Sri Sai S.
    Flake, John C.
    JOURNAL OF POWER SOURCES, 2011, 196 (20) : 8583 - 8589
  • [39] Effect of temperature on silicon-based anodes for lithium-ion batteries
    Piernas-Munoz, M. J.
    Trask, S. E.
    Dunlop, A. R.
    Lee, E.
    Bloom, I
    JOURNAL OF POWER SOURCES, 2019, 441
  • [40] Elemental Foil Anodes for Lithium-Ion Batteries
    Heligman, Brian T.
    Manthiram, Arumugam
    ACS ENERGY LETTERS, 2021, 6 (08) : 2666 - 2672