Secure quantum key distribution with a subset of malicious devices

被引:9
|
作者
Zapatero, Victor [1 ]
Curty, Marcos [1 ]
机构
[1] Univ Vigo, Dept Signal Theory & Commun, Escuela Ingn Telecomunicac, Vigo, Spain
关键词
42;
D O I
10.1038/s41534-020-00358-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The malicious manipulation of quantum key distribution (QKD) hardware is a serious threat to its security, as, typically, neither end users nor QKD manufacturers can validate the integrity of every component of their QKD system in practice. One possible approach to re-establish the security of QKD is to use a redundant number of devices. Following this idea, we address various corruption models of the possibly malicious devices and show that, compared to the most conservative model of active and collaborative corrupted devices, natural assumptions allow to significantly enhance the secret key rate or considerably reduce the necessary resources. Furthermore, we show that, for most practical situations, the resulting finite-size secret key rate is similar to that of the standard scenario assuming trusted devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Secure quantum key distribution with a subset of malicious devices
    Víctor Zapatero
    Marcos Curty
    [J]. npj Quantum Information, 7
  • [2] Experimental Quantum Key Distribution Secure Against Malicious Devices
    Li, Wei
    Zapatero, Victor
    Tan, Hao
    Wei, Kejin
    Min, Hao
    Liu, Wei-Yue
    Jiang, Xiao
    Liao, Sheng-Kai
    Peng, Cheng-Zhi
    Curty, Marcos
    Xu, Feihu
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW APPLIED, 2021, 15 (03):
  • [3] Secure quantum key distribution with realistic devices
    Xu, Feihu
    Ma, Xiongfeng
    Zhang, Qiang
    Lo, Hoi-Kwong
    Pan, Jian-Wei
    [J]. REVIEWS OF MODERN PHYSICS, 2020, 92 (02)
  • [4] Secure quantum key distribution
    Lo H.-K.
    Curty M.
    Tamaki K.
    [J]. Nature Photonics, 2014, 8 (08) : 595 - 604
  • [5] Distributed information-theoretical secure protocols for quantum key distribution networks against malicious nodes
    Luo, Yi
    Li, Qiong
    Mao, Hao-Kun
    [J]. JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2024, 16 (10) : 956 - 968
  • [6] Demonstration of secure quantum key distribution
    Bovino, FA
    Varisco, P
    Martinoli, A
    De Nicolo, P
    Bruzzo, S
    Colla, AM
    Castagnoli, G
    Di Giuseppe, G
    Sergienko, AV
    [J]. QUANTUM INFORMATION AND COMPUTATION, 2003, 5105 : 1 - 10
  • [7] Megabits secure key rate quantum key distribution
    Zhang, Q.
    Takesue, H.
    Honjo, T.
    Wen, K.
    Hirohata, T.
    Suyama, M.
    Takiguchi, Y.
    Kamada, H.
    Tokura, Y.
    Tadanaga, O.
    Nishida, Y.
    Asobe, M.
    Yamamoto, Y.
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [8] Megabits secure key rate quantum key distribution
    Zhang, Qiang
    Takesue, Hiroki
    Honjo, Toshimori
    Wen, Kai
    Hirohata, Toru
    Suyama, Motohiro
    Takiguchi, Yoshihiro
    Kamada, Hidehiko
    Tokura, Yasuhiro
    Tadanaga, Osamu
    Nishida, Yoshiki
    Asobe, Masaki
    Yamamoto, Yoshihisa
    [J]. 2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 2301 - +
  • [10] Unconditionally secure device-independent quantum key distribution with only two devices
    Barrett, Jonathan
    Colbeck, Roger
    Kent, Adrian
    [J]. PHYSICAL REVIEW A, 2012, 86 (06):