Secure quantum key distribution with realistic devices

被引:839
|
作者
Xu, Feihu [1 ,2 ,3 ]
Ma, Xiongfeng [4 ]
Zhang, Qiang [1 ,2 ,3 ]
Lo, Hoi-Kwong [5 ,6 ]
Pan, Jian-Wei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Shanghai Branch, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Shanghai 201315, Peoples R China
[4] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China
[5] Univ Toronto, Ctr Quantum Informat & Quantum Control, Dept Phys, Toronto, ON M5S 3G4, Canada
[6] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
关键词
PARITY-CHECK CODES; SINGLE-PHOTON DETECTORS; UNCONDITIONAL SECURITY; BIT COMMITMENT; PRIVACY AMPLIFICATION; FIELD-TEST; CONTINUOUS-VARIABLES; DISTRIBUTION-SYSTEM; DIGITAL-SIGNATURES; ATOMIC ENSEMBLES;
D O I
10.1103/RevModPhys.92.025002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In principle, quantum key distribution (QKD) offers information-theoretic security based on the laws of physics. In practice, however, the imperfections of realistic devices might introduce deviations from the idealized models used in security analyses. Can quantum code breakers successfully hack real systems by exploiting the side channels? Can quantum code makers design innovative countermeasures to foil quantum code breakers? Theoretical and experimental progress in the practical security aspects of quantum code making and quantum code breaking is reviewed. After numerous attempts, researchers now thoroughly understand and are able to manage the practical imperfections. Recent advances, such as the measurement-device-independent protocol, have closed critical side channels in the physical implementations, paving the way for secure QKD with realistic devices.
引用
收藏
页数:60
相关论文
共 50 条
  • [1] Secure quantum key distribution with a subset of malicious devices
    Zapatero, Victor
    Curty, Marcos
    [J]. NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [2] Secure quantum key distribution with a subset of malicious devices
    Víctor Zapatero
    Marcos Curty
    [J]. npj Quantum Information, 7
  • [3] Experimental Quantum Key Distribution Secure Against Malicious Devices
    Li, Wei
    Zapatero, Victor
    Tan, Hao
    Wei, Kejin
    Min, Hao
    Liu, Wei-Yue
    Jiang, Xiao
    Liao, Sheng-Kai
    Peng, Cheng-Zhi
    Curty, Marcos
    Xu, Feihu
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW APPLIED, 2021, 15 (03):
  • [4] Secure quantum key distribution
    Lo H.-K.
    Curty M.
    Tamaki K.
    [J]. Nature Photonics, 2014, 8 (08) : 595 - 604
  • [5] Demonstration of secure quantum key distribution
    Bovino, FA
    Varisco, P
    Martinoli, A
    De Nicolo, P
    Bruzzo, S
    Colla, AM
    Castagnoli, G
    Di Giuseppe, G
    Sergienko, AV
    [J]. QUANTUM INFORMATION AND COMPUTATION, 2003, 5105 : 1 - 10
  • [6] Megabits secure key rate quantum key distribution
    Zhang, Q.
    Takesue, H.
    Honjo, T.
    Wen, K.
    Hirohata, T.
    Suyama, M.
    Takiguchi, Y.
    Kamada, H.
    Tokura, Y.
    Tadanaga, O.
    Nishida, Y.
    Asobe, M.
    Yamamoto, Y.
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [7] Megabits secure key rate quantum key distribution
    Zhang, Qiang
    Takesue, Hiroki
    Honjo, Toshimori
    Wen, Kai
    Hirohata, Toru
    Suyama, Motohiro
    Takiguchi, Yoshihiro
    Kamada, Hidehiko
    Tokura, Yasuhiro
    Tadanaga, Osamu
    Nishida, Yoshiki
    Asobe, Masaki
    Yamamoto, Yoshihisa
    [J]. 2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 2301 - +
  • [9] Unconditionally secure device-independent quantum key distribution with only two devices
    Barrett, Jonathan
    Colbeck, Roger
    Kent, Adrian
    [J]. PHYSICAL REVIEW A, 2012, 86 (06):
  • [10] Secure device-independent quantum key distribution with causally independent measurement devices
    Lluís Masanes
    Stefano Pironio
    Antonio Acín
    [J]. Nature Communications, 2