Finite element analysis and topology optimization of Ti-6Al-4V hip implant fabricated by laser powder bed fusion process

被引:7
|
作者
Jhunjhunwala, P. [1 ]
Kishor, A. [1 ]
Burela, Ramesh Gupta [1 ]
Singh, Rajesh [2 ]
Gupta, Ankit [1 ]
机构
[1] Shiv Nadar Univ, Dept Mech Engn, Greater Noida, Uttar Pradesh, India
[2] Uttaranchal Univ, Div Res & Innovat, Dehra Dun, Uttarakhand, India
关键词
Hip implant; additive manufacturing; biomedical application design; topology optimization; finite element analysis; solid isotropic material penalization; STRESS; SIMULATION; MODEL;
D O I
10.1177/09544089221144189
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, a three-dimensional thermomechanical finite element model has been developed to simulate the additive manufacturing process of a Ti-6Al-4V hip implant fabricated using the laser powder bed fusion process. The developed numerical model is used to predict the thermal fields, residual stresses, and part deformation during the printing process. To reduce the mass and consequently the weight of the hip implant, topology optimization has been carried out. Furthermore, the additively manufactured Ti-6Al-4V hip implant subjected to realistic loading conditions is analyzed. In the numerical model, new elements are activated for each layer to simulate the recoating of metal powder, and the thermal gradient, residual stress, and deformation associated with the layer are computed. It is observed that the implant geometry significantly influences the quality of the printed part. Topology-optimized geometry shows a notable reduction in residual stress generation and distortions, along with a significant reduction in mass.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A study on surface morphology and tension in laser powder bed fusion of Ti-6Al-4V
    Khorasani, Mahyar
    Ghasemi, AmirHossein
    Awan, Umar Shafique
    Hadavi, Elahe
    Leary, Martin
    Brandt, Milan
    Littlefair, Guy
    O'Neil, William
    Gibson, Ian
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 111 (9-10): : 2891 - 2909
  • [32] A study on surface morphology and tension in laser powder bed fusion of Ti-6Al-4V
    Mahyar Khorasani
    AmirHossein Ghasemi
    Umar Shafique Awan
    Elahe Hadavi
    Martin Leary
    Milan Brandt
    Guy Littlefair
    William O’Neil
    Ian Gibson
    The International Journal of Advanced Manufacturing Technology, 2020, 111 : 2891 - 2909
  • [33] Interplay of strain and phase evolution of laser powder bed fusion Ti-6Al-4V
    Andrews, C.
    Heo, T. W.
    Shi, R.
    Basgul, C.
    Kurtz, S.
    Matthews, M. J.
    Taheri, M. L.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 855
  • [34] Characterization of the structural features of Ti-6Al-4V hollow-strut lattices fabricated by laser powder bed fusion
    Zhong, H. Z.
    Song, T.
    Das, R.
    Li, C. W.
    Gu, J. F.
    Qian, M.
    MATERIALS CHARACTERIZATION, 2024, 217
  • [35] Microstructure and Mechanical Property of MXene-Added Ti-6Al-4V Alloy Fabricated by Laser Powder Bed Fusion
    Zhang, Yu
    Dong, Mingqi
    Zhou, Weiwei
    Nomura, Naoyuki
    JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, 2025, 89 (03) : 161 - 167
  • [36] Data-driven approaches for fatigue prediction of Ti-6Al-4V parts fabricated by laser powder bed fusion
    Balamurugan, Rakesh
    Chen, Jie
    Meng, Changyu
    Liu, Yongming
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 182
  • [37] Predictability Assessment of As-built Hardness of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion
    Maitra, Varad
    Shi, Jing
    MANUFACTURING LETTERS, 2023, 35 : 785 - 796
  • [38] Microstructure and Mechanical Property of MXene-Added Ti-6Al-4V Alloy Fabricated by Laser Powder Bed Fusion
    Zhang, Yu
    Dong, Mingqi
    Zhou, Weiwei
    Nomura, Naoyuki
    MATERIALS TRANSACTIONS, 2023, 64 (06) : 1169 - 1174
  • [39] The Size Effect on Forming Quality of Ti-6Al-4V Solid Struts Fabricated via Laser Powder Bed Fusion
    Liang, Huixin
    Xie, Deqiao
    Mao, Yuyi
    Shi, Jianping
    Wang, Changjiang
    Shen, Lida
    Tian, Zongjun
    METALS, 2019, 9 (04)
  • [40] Predictability Assessment of As-built Hardness of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion
    Maitra, Varad
    Shi, Jing
    MANUFACTURING LETTERS, 2023, 35 : 785 - 796