Non-holonomic systems with symmetry allowing a conformally symplectic reduction

被引:0
|
作者
Rios, PD [1 ]
Koiller, J [1 ]
机构
[1] Lab Nacl Comp Cient, BR-25651070 Petropolis, RJ, Brazil
关键词
non-holonomic systems; almost Poisson structures;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Non-holonomic mechanical systems can be described by a degenerate almost-Poisson structure [10] (dropping the Jacobi identity) in the constrained space. If enough symmetries transversal to the constraints are present, the system reduces to a nondegenerate almost-Poisson structure on a "compressed" space. Here we show, in the simplest non-holonomic systems, that in favorable circumnstances the compressed system is conformally symplectic, although the "non-compressed" constrained system never admits a Jacobi structure (in the sense of Marle et al. [4][9]).
引用
收藏
页码:239 / 252
页数:14
相关论文
共 50 条
  • [1] Unified symmetry of non-holonomic singular systems
    Yuan-Cheng, Li
    Jing, Wang
    Li-Li, Xia
    Qi-Bao, Hou
    Hong-Xing, Jing
    [J]. CHINESE PHYSICS, 2007, 16 (10): : 2841 - 2844
  • [2] Form invariance and Lie symmetry of equations of non-holonomic systems
    Wang, SY
    Mei, FX
    [J]. CHINESE PHYSICS, 2002, 11 (01): : 5 - 8
  • [3] On Generalized Non-holonomic Systems
    P. Balseiro
    J. E. Solomin
    [J]. Letters in Mathematical Physics, 2008, 84 : 15 - 30
  • [4] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    RAMIREZ, R
    [J]. HADRONIC JOURNAL, 1983, 6 (06): : 1693 - 1704
  • [6] Symplectic cuts and projection quantization for non-holonomic constraints
    Bojowald, M
    Strobl, T
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2003, 12 (04): : 713 - 725
  • [7] On non-holonomic systems equilibria
    Kozlov, V.V.
    [J]. Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 1994, (03): : 74 - 79
  • [8] Symmetry and conservation laws in non-holonomic mechanics
    Massa, Enrico
    Pagani, Enrico
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (05)
  • [9] On generalized non-holonomic systems
    Balseiro, P.
    Solomin, J. E.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2008, 84 (01) : 15 - 30
  • [10] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    INOSTROZA, ROR
    [J]. HADRONIC JOURNAL, 1984, 7 (05): : 1134 - 1157