Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter

被引:56
|
作者
Yang, Shu-Chih [1 ,2 ]
Kalnay, Eugenia [2 ,3 ]
Hunt, Brian [2 ,3 ]
Bowler, Neill E. [4 ]
机构
[1] Natl Cent Univ, Dept Atmospher Sci, Jhongli 320, Taiwan
[2] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[4] Met Off, Exeter, Devon, England
关键词
3D-Var; 4D-Var; LETKF; IMPLEMENTATION; MODEL;
D O I
10.1002/qj.353
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We have investigated a method to substantially reduce the analysis computations within the Local Ensemble Transform Kalman Filter (LETKF) framework. Instead of computing the LETKF analysis at every model grid point. we compute the analysis on a coarser grid and interpolate onto a high-resolution grid by interpolating the analysis weights of the ensemble forecast members derived from the LETKF. Because the weights vary on larger scales than the analysis increments. there is little degradation in the quality of the weight-interpolated analyses compared to the analyses derived with the high-resolution grid. The weight-interpolated analyses are more accurate than the ones derived by interpolating the analysis increments. Additional benefit from the weight-interpolation method includes improving the analysis accuracy in the data-void regions, where the standard LEKTF with the high-resolution grid gives no analysis corrections due to a lack of available observations. Copyright (C) Royal Meteorological Society and Crown Copyright, 2008
引用
收藏
页码:251 / 262
页数:12
相关论文
共 50 条
  • [1] Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
    Hunt, Brian R.
    Kostelich, Eri J.
    Szunyogh, Istvan
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 112 - 126
  • [2] Data assimilation using a climatologically augmented local ensemble transform Kalman filter
    Kretschmer, Matthew
    Hunt, Brian R.
    Ott, Edward
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2015, 67 : 1 - 9
  • [3] A local ensemble Kalman filter for atmospheric data assimilation
    Ott, E
    Hunt, BR
    Szunyogh, I
    Zimin, AV
    Kostelich, EJ
    Corazza, M
    Kalnay, E
    Patil, DJ
    Yorke, JA
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2004, 56 (05) : 415 - 428
  • [4] A local ensemble transform Kalman filter data assimilation system for the NCEP global model
    Szunyogh, Istvan
    Kostelich, Eric J.
    Gyarmati, Gyorgyi
    Kalnay, Eugenia
    Hunt, Brian R.
    Ott, Edward
    Satterfield, Elizabeth
    Yorke, James A.
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2008, 60 (01) : 113 - 130
  • [5] A local ensemble transform Kalman particle filter for convective-scale data assimilation
    Robert, Sylvain
    Leuenberger, Daniel
    Kunsch, Hans R.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (713) : 1279 - 1296
  • [6] Ensemble Kalman filter for data assimilation
    Chen, Yan
    [J]. COMPUTERS & GEOSCIENCES, 2013, 55 : 1 - 2
  • [7] A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor
    Hoffman, Ross N.
    Ponte, Rui M.
    Kostelich, Eric J.
    Blumberg, Alan
    Szunyogh, Istvan
    Vinogradov, Sergey V.
    Henderson, John M.
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2008, 25 (09) : 1638 - 1656
  • [8] Weighted ensemble transform Kalman filter for image assimilation
    Beyou, Sebastien
    Cuzol, Anne
    Gorthi, Sai Subrahmanyam
    Memin, Etienne
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2013, 65
  • [9] Data assimilation for nonlinear systems with a hybrid nonlinear Kalman ensemble transform filter
    Nerger, Lars
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2022, 148 (743) : 620 - 640
  • [10] Hydrologic data assimilation with the ensemble Kalman filter
    Reichle, RH
    McLaughlin, DB
    Entekhabi, D
    [J]. MONTHLY WEATHER REVIEW, 2002, 130 (01) : 103 - 114