Weighted ensemble transform Kalman filter for image assimilation

被引:18
|
作者
Beyou, Sebastien [1 ]
Cuzol, Anne [2 ]
Gorthi, Sai Subrahmanyam [3 ]
Memin, Etienne [1 ]
机构
[1] INRIA, F-35042 Rennes, France
[2] Univ Bretagne S, CNRS, UMR 6205, Lab Math Bretagne Atlantique, F-56017 Vannes, France
[3] Indian Inst Space Sci & Technol, Thiruvananthapuram 695547, Kerala, India
关键词
image data assimilation; particle filters; ensemble filters; SST satellite images; MOTION;
D O I
10.3402/tellusa.v65i0.18803
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study proposes an extension of the Weighted Ensemble Kalman filter (WEnKF) proposed by Papadakis et al. (2010) for the assimilation of image observations. The main focus of this study is on a novel formulation of the Weighted filter with the Ensemble Transform Kalman filter (WETKF), incorporating directly as a measurement model a non-linear image reconstruction criterion. This technique has been compared to the original WEnKF on numerical and real world data of 2-D turbulence observed through the transport of a passive scalar. In particular, it has been applied for the reconstruction of oceanic surface current vorticity fields from sea surface temperature (SST) satellite data. This latter technique enables a consistent recovery along time of oceanic surface currents and vorticity maps in presence of large missing data areas and strong noise.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Data assimilation with the weighted ensemble Kalman filter
    Papadakis, Nicolas
    Memin, Etienne
    Cuzol, Anne
    Gengembre, Nicolas
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2010, 62 (05): : 673 - 697
  • [2] Unscented weighted ensemble Kalman filter for soil moisture assimilation
    Fu, Xiaolei
    Yu, Zhongbo
    Ding, Yongjian
    Qin, Yu
    Luo, Lifeng
    Zhao, Chuancheng
    Lu, Haishen
    Jiang, Xiaolei
    Ju, Qin
    Yang, Chuanguo
    [J]. JOURNAL OF HYDROLOGY, 2020, 580
  • [3] ANALYSIS OF SST IMAGES BY WEIGHTED ENSEMBLE TRANSFORM KALMAN FILTER
    Gorthi, Sai Subrahmanyam
    Beyou, Sebastien
    Memin, Etienne
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 4172 - 4175
  • [4] An application of the localized weighted ensemble Kalman filter for ocean data assimilation
    Chen, Yan
    Zhang, Weimin
    Wang, Pinqiang
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (732) : 3029 - 3047
  • [5] Ensemble Kalman filter for data assimilation
    Chen, Yan
    [J]. COMPUTERS & GEOSCIENCES, 2013, 55 : 1 - 2
  • [6] Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
    Hunt, Brian R.
    Kostelich, Eri J.
    Szunyogh, Istvan
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 112 - 126
  • [7] Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter
    Yang, Shu-Chih
    Kalnay, Eugenia
    Hunt, Brian
    Bowler, Neill E.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (638) : 251 - 262
  • [8] Data assimilation using a climatologically augmented local ensemble transform Kalman filter
    Kretschmer, Matthew
    Hunt, Brian R.
    Ott, Edward
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2015, 67 : 1 - 9
  • [9] Data assimilation for nonlinear systems with a hybrid nonlinear Kalman ensemble transform filter
    Nerger, Lars
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2022, 148 (743) : 620 - 640
  • [10] Ensemble Kalman filter with the unscented transform
    Luo, X.
    Moroz, I. M.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (05) : 549 - 562