Ensemble R-FCN for Object Detection

被引:3
|
作者
Li, Jian [1 ,2 ]
Qian, Jianjun [1 ,2 ]
Zheng, Yuhui [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
关键词
Object detection; R-FCN; Self-driving; Deep learning;
D O I
10.1007/978-981-10-7605-3_66
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an Ensemble R-FCN framework for object detection. Specifically, we mainly make three contributions to our detection framework: (1) we augment the training images for R-FCN when facing the limited training samples and small object. (2) We further introduce several enhancement schemes to improve the performance of the single R-FCN. (3) An ensemble RFCN is proposed to make our detection system more robust by combining different feature extractors and multi-scale inference. Experimental results demonstrate the advantages of the proposed method. Especially, our method achieved the performance of AP score 0.829 which ranked No. 1 among over 360 teams in Ucar Self-driving deep learning Competition.
引用
收藏
页码:400 / 406
页数:7
相关论文
共 50 条
  • [21] Target location detection of mobile robots based on R-FCN deep convolutional neural network
    Hua Cen
    International Journal of System Assurance Engineering and Management, 2023, 14 : 728 - 737
  • [22] Automatic Detection of Coronary Metallic Stent Struts Based on YOLOv3 and R-FCN
    Jiang, Xiaolu
    Zeng, Yanqiu
    Xiao, Shixiao
    He, Shaojie
    Ye, Caizhi
    Qi, Yu
    Zhao, Jiangsheng
    Wei, Dezhi
    Hu, Muhua
    Chen, Fei
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020
  • [23] 改进R-FCN的船舶识别方法
    黄致君
    桑庆兵
    计算机科学与探索, 2020, (06) : 1045 - 1053
  • [24] Target location detection of mobile robots based on R-FCN deep convolutional neural network
    Cen, Hua
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (02) : 728 - 737
  • [25] 基于R-FCN的行人检测方法研究
    蒋胜
    黄敏
    朱启兵
    王正来
    计算机工程与应用, 2018, 54 (18) : 180 - 183+262
  • [26] 基于改进R-FCN的SAR图像识别
    周晓玲
    张朝霞
    鲁雅
    王倩
    王琨琨
    系统工程与电子技术, 2022, 44 (04) : 1202 - 1209
  • [27] 改进R-FCN模型的小尺度行人检测
    刘万军
    董利兵
    曲海成
    中国图象图形学报, 2021, (10) : 2400 - 2410
  • [28] 基于改进R-FCN的遥感图像舰船检测
    王健林
    吕晓琪
    张明
    李菁
    激光与光电子学进展, 2019, (16) : 222 - 228
  • [29] 基于改进R-FCN的交通标志检测
    喻清挺
    喻维超
    喻国平
    计算机工程, 2021, 47 (12) : 285 - 290+298
  • [30] 复杂场景下基于R-FCN的手势识别
    桑农
    倪子涵
    华中科技大学学报(自然科学版), 2017, 45 (10) : 54 - 58