spatial sparse recovery;
constrained spatial smoothing;
spatial spline regression;
alternating direction method of multipliers;
HUMAN MOBILITY;
PREDICTABILITY;
D O I:
10.3390/app9091733
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Reconstructing fine-grained spatial densities from coarse-grained measurements, namely the aggregate observations recorded for each subregion in the spatial field of interest, is a critical problem in many real world applications. In this paper, we propose a novel Constrained Spatial Smoothing (CSS) approach for the problem of spatial data reconstruction. We observe that local continuity exists in many types of spatial data. Based on this observation, our approach performs sparse recovery via a finite element method, while in the meantime enforcing the aggregated observation constraints through an innovative use of the Alternating Direction Method of Multipliers (ADMM) algorithm framework. Furthermore, our approach is able to incorporate external information as a regression add-on to further enhance recovery performance. To evaluate our approach, we study the problem of reconstructing the spatial distribution of cellphone traffic volumes based on aggregate volumes recorded at sparsely scattered base stations. We perform extensive experiments based on a large dataset of Call Detail Records and a geographical and demographical attribute dataset from the city of Milan, and compare our approach with other methods such as Spatial Spline Regression. The evaluation results show that our approach significantly outperforms various baseline approaches. This proves that jointly modeling the underlying spatial continuity and the local features that characterize the heterogeneity of different locations can help improve the performance of spatial recovery.
机构:
Inst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya, Indonesia
Univ Airlangga, Fac Adv Technol & Multidiscipline, Data Sci Technol Study Program, Surabaya, IndonesiaInst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya, Indonesia
Yasmirullah, Septia Devi Prihastuti
Otok, Bambang Widjanarko
论文数: 0引用数: 0
h-index: 0
机构:
Inst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya, IndonesiaInst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya, Indonesia
Otok, Bambang Widjanarko
Purnomo, Jerry Dwi Trijoyo
论文数: 0引用数: 0
h-index: 0
机构:
Inst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya, IndonesiaInst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya, Indonesia
Purnomo, Jerry Dwi Trijoyo
Prastyo, Dedy Dwi
论文数: 0引用数: 0
h-index: 0
机构:
Inst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya, IndonesiaInst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya, Indonesia
机构:
Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, IndonesiaDepartment of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
Yasmirullah, Septia Devi Prihastuti
Otok, Bambang Widjanarko
论文数: 0引用数: 0
h-index: 0
机构:
Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, IndonesiaDepartment of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
Otok, Bambang Widjanarko
Purnomo, Jerry Dwi Trijoyo
论文数: 0引用数: 0
h-index: 0
机构:
Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, IndonesiaDepartment of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
Purnomo, Jerry Dwi Trijoyo
Prastyo, Dedy Dwi
论文数: 0引用数: 0
h-index: 0
机构:
Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, IndonesiaDepartment of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia